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In this text, we describe Ito integrals (stochastic integrals) and Ito formula as important tools in the
theory of stochastic processes, and we describe a part of analysis of Markov processes with jumps by
using stochastic differential equations (SDE’s). (We assume the readers are well-known about basics of
probability theory.)
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1 Definition of Stochastic Processes

1.1 Probability spaces and stochastic processes

A stochastic process is random variables with time parameter; X; = X;(w) where ¢ > 0 denotes the time
and w € ) is a parameter of randomness, i.e., X; is on a probability space (2, F, P).

If we consider the time as times like 1st time, 2nd time, 3rd time, ...in a coin tossing, then n =1,2,...
denote the time and we denote the random variables as X,, = X, (w). The previous one is called as
“continuous time”, the later one is as “discrete time”.

For ech w € Q, X.(w) = (X¢(w))e>0) is called a sample path. If (X;) has continuous sample paths,
then it is called a continuous process or a C-process, or if paths are right-continuous and have
left-hand-limits (rcll), then it is called a discontinuous process or D-process.

Let I be an interval of R4 = [0,00) or a discrete set of Z; or N, Let S be a topology space (we mainly consider the
d-dimensional Euclid space R?).

A stochastic process { X }+cr on a probability space (2, F, P) is a set of S-valued random variables X; = X (w) parameterized
by time t € I, i.e., (X¢)ter. (We usually omit the variables w € € if it is not necessary.)

If I is an interval, then it called as a continuous time (stochastic) process, or if I is a discrete set, then it is called as a

discrete time (stochastic) process. However, in the later case, it is mainly denoted by X,,,n = 0,1,2,.... And S is called as
a state space.
In this text we mainly consider the continuous time processes, so we let I = [0,7T] or [0,00) and S = R! or R%. (Off course,

we note them if we change.)

A filtration (F;)¢>0 is a family of sub o-additive classes of F such that F, C F; if s < t.

{X.} is (F¢)-adapted g Y >0, X € Fi, i.e., Xy is Fy-measurable.

{X+} is measurable if it is measurable function of (¢,w), that is, the following is measurable;

(t,w) € ([0,00) x Q, B ([0, ) ® F) — X;(w) € (R*,B")

For a stochastic process {X:}, if we let F) 1= 0(Xs;8 < t) = V,; X, (BY) = o(U,<, X, 1 (BY)),
then {X;} is (F})-adapted.

In usual, to the above filtration we add N' = {N € F; P(N) = 0}, i.e., F; = FP VN = o(F) UN).
Under this filtration if ¥t > 0, X; = Y; a.s. then, {Y;} is also (F;)-adapted.

This filtration is called the canonical filtration by {X;}.

For two processes X = {X;},Y = {V;},

e X and Y are equivalent &L Vt, P(X; =Y;) = 1.
e X and Y are strong equivalent P("t, X; = Y;) = 1.

e X and Y are equivalent in law PN Vig, ooty € L(Xgyy o, Xy,) @ (Y, ..., Y:)) (in the sense

of distributions), that is, at any finite time points, the finite dimensional distributions are equal.

Clearly, [strong equivalence = equivalence = equivalence in law], however, the inverses are
not true in general.

For example, if both have right-continuous sample paths, then the equivalence implies t strong equiv-
alence. Because the probability of that they are equal at every rational time points is one, and their
right-continuities implies at every irrational time points.

1.2 Exponential times and Poisson processes

For a constant v > 0, a random variable 7 = 7(w) is distributed by an exponential distribution with
a parameter « if

P(r>t)= / ae”Yds = e .
¢

That is, 7 has a distribution with a density function f(s) = ae™*5.
In this text, we simply call 7 as an a-exponential time or an exponential time.
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The mean and the variance can be easily calculated and they are given as

Elr] = /Ooo ase™ds = X, V(r) = B[] - (B[])? = —.

a
Question 1.1 Calculate the above variance.

Proposition 1.1 If 7 is an exponential time, then it has the following memoryless property:
fort,s >0,
P(r>t+s|7>s)=P(r >1t).

Proof. (tre)
P(r>t+s) e Uts
Pir>t+s|7>s)= = =e ' =P(r>1t).
( | ) P(1 > s) e ( )
|
Proposition 1.2 71, 7m,...7, are independent and oy, s, ..., ay-exponential times, then
min{7y,72,...Tn} i an a1 + ag + - - - + ap-exponential time. Furthermore, it holds
. Qg
P(min{m,To,...Th} =T) = .
(min{ry, 72,7} = mh) = T e
Proof. For simplicity, we show in case of n =2,k = 1.
P(ri AT} >t)=P(r >t,72>1) = P(ry > t)P(r2 > t) = e~ (@ F2)t,
The joint distribution of 71,75 is a product of each distributions of them by independence. Hence,
P(min{r,} =71) = P(n <)
o0
— / dsare™ Y P(s < 12)
0
oo
= / dsoe”*1%em 28
0
— 1
o a1 + a9 ’
The general case is a similar. [ |

For a given A > 0, a stochastic process (X;);>¢ is a Poisson process with a parameter A (simply
called a A-Poisson process) if it satisfies the following:

(1) Xo=0.
(2) If 0 < s < t, then X; — X is distributed by a Poisson distribution with a parameter (¢ — s), i.e,

AP (t—s)™
e At—s) ( s)

P(X,— X, =n) = =

(n=0,1,2,...).
(3) X, has independent increments, i.e., for 0 < t1 < to < -+ < tp, X¢y, Xy — Xpyy oo, X, — Xt
are independent.

Theorem 1.1 (Construction of a Poisson process) Let o1,03,... be identically independent
distributed random variables each be a \-exponential time. Set T, = 22:1 ok, 70 =0 and let

oo
Xi=n < 7, <t<Tpy1, te, Xy = an[ﬂ“rnﬂ)(t) = max{n; 7, < t}.

n=0

Then this is a A-Poisson process.
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Note The inverse of the above result holds, that is, if (X;)¢>¢ is a A-Poisson process and let 79,72, . ..
be jump times of it, then 71,7 — 71,73 — 7o, ... are i.i.d. and each of them is a A-exponential time.

In order to show the above result, we use the following result.

Proposition 1.3 The sum of independent n-number of A-exponential times oy; T = Y ._, 0% is
distributed by the gamma distiribution T'(n, \), i.e.,

t
1
P t) = n _n—1 7)\sd )
(r<i) /0 (n_l)!A e ’

Proof. By the independence of (cy,),

P(O’1 +ido, < t) = / )\nef)\(81+~~sn)d51 <o dsy,.
S14-8n <t

By the change of variables such that uy =s1+---s; (k=1,...,n) and s = uy,,

/ Ne Msitsn)ge oo ds, = /
S14-sp, <t 0

U2
dty_1 -+ / dug \"e = un
0

usz
dup_1 -+ / duguy e un
0

n—1lyn_—Au
- >\ n
(n— 1)!u"

¢ 1
= / ds———\"gn"le=As

e

Il

S—
QU
&

The proof of Theorem 1.1 Since 7, is independent of 7,1 and distributed by T'(n, \), we have
PXiy=n) = Pl <t<Tpt1=Tn+0ns1)

t
1 n. n—1_—As
= /O dS WA S 16 )\P(t<8+0'n+1)

t
_ / ds 1 )\nsnflef)\sef(tfs))\

n t n4n
e A [y AT
(n—=1"J, n!

By a similar way,

P(Tn+1 >t+S,Xt:TL) = P(Tn+1>t+3,’rn§t<7’n+1)
= Plrp+opt1 >t+s,m <t)

t
1
= /0 du m/\”un_le_)‘“P(u +opt1 >t+s)

t n4n
_ / du 1 /\nunflef)\uef)\(tJrsfu) _ ef)\(t+s)>\ t )
0 (n—1)! n!
Hence,
(1].) P(Tn+1>t+8| Xt:n)zeiAS:P(01:7'1>S).
Moreover,
(1.2)

under the condition Xy =n, 7,41 —t,0n42,- . ., Ontm has the same distribution as o1, 09,..., 0.
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In fact,
P(Tp41 —t > 81,0042 > S2,. .., Opntm > Sm| X¢ = n)
= P(Tn <t < Tpatl, Tnel — > 81,0n42 > 82, -+, Optm > Sm)/P(Xy =n)
P(rn <t,Tni1 —t > 81)P(0nt2 > S2,. oy Onpm > Sm)/P(Xt =n)
P(rp41 —t > s1| Xy =n)P(o2 > s9,...,0m > Sm)
P(oy > s1)P(og > $9,...,0m > Sim)
P(o1 > 81,02 > S2,...,0m > Sm)-

By this and noting that 7p4m —t = (Th41 — t) + Opnt2 + - - + Ongm, we have in general, for m > 1, we
can get
P(Tpym >t+ 8| Xe =n) = P71, > 8).

By subtracting the above from the above with m + 1 instead of m, we have
P(Tn+m S t+ s < Tn+m+1| Xt = ’I'L) = P(Tm S s < Tm+1) = P(XS = m)
By using this, for n > 0,m > 1,

P(Xt:n,Xt_,_s—Xt:m) = P

[
33T

By summing on n > 0,
N Amgm

m!

PXiyys—Xe=m)=P(Xs=m)=e
In case of m = 0, it can be seen P(X;;s — X; = m) = e~**, and this is included in the above. In fact, by
Plr,>t+s| Xe=n)=P(r, >t+s| 7 <t <7py1) =0,
if we subtract this from (1.1), then

P(Xips=n| Xy =n)=P(ry, <t+5<Tpp1| Xe =n) =e .

Thus,
P(Xt = n,XH_S — Xt = O) = P(Xt = Tl,Xt_;,_S = Tl)
= P(Xt = ’I’L)P(Xt_;,_s = TLI Xt = TL)
P(X; = n)e_)‘s.

Hence, by summing on n > 0, we have P(X;,,— X; = 0) = e~**, and the independence of X;, X; s — X;.
Moreover, by a similar way and by using (1.2), we have for 0 <t; < -+ < tg,
P(th = TL(),th — Xto =MNi,... ,th — th71 = nk)
= P(X¢, =m0, Xty =no+n1,..., Xe, =no+ -+ +ng)
= P(Xto = ’rLo)P(th_tD =Ni,... 7th—t0 =MNni + R —|— ’I’Lk;).

Therefore, by repeating this, we have the following independent increments:

P(Xto = Ny, th — Xto =MN1y... ,th — th71 = le)
= P(Xy, = no)P(Xy, 4y = n1) - P( Xyt = )
= P(Xto = TL())P(th — Xto = nl) . P(th — th = ’I'Lk)
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1.3 Brownian motions (Wiener processes)

A real-valued stochastic process (B;):>0 is a (1-dimensional) Brownian motion is that
(1) By =0 as.
(2) (B) is continuous, i.e., for a.a.w, the sample path B.(w) is continuous.

(3) For 0 =ty < t1 < --- < ty, {By, — Bi,_, }}_, are independent and By, — By, , is distributed by
the normal distribution N (0, ¢ — tg—1).

Moreover, if B; = (B},...,B%) has d numbers of independent one-dimensional Brownian motions
as components, then it is called a d-dimensional Brownian motion. (It is realized as a product
probability space of d-numbers of independent one-dimensional Brownian motions.)

In this case (B;) satisfies the same conditions as above with the following (3)’ instead of (3);

(3) For 0 =ty < t1 < -+ <ty, {By, — By, , }7_, are independent and By, — By, , is distributed by
the d-dimensional normal distribution N(0, (tx — tk—1)l4).

Let W = C([0,00) — R!) and let W be the o-additive class determined by the local uniform conver-

gence topology.

Moreover let w = w(t) € Wy & e W;w(0) = 0. For any finite number of time points t,, =

(t1y .y tn);0 <t <ty <--+ <ty <ooand for any A4,, € B", C(t,, 4,) = {w € Wo; (w(t1),...,w(ty)) €
Ay} is called a cylinder set). We denote the o-additive class generated by all cylinder sets as Wy (it is
known that this is the same o-additive class determined by the relative topology of W).

Theorem 1.2 (Existence and uniqueness of Wiener measure) There exists a unique proba-
bility measure Pg on (Q, F) = (Wy, W) such that under this measure By(w) = w(t) is a Brown motion.

Pp is called the Wiener measure. The Brownian motion is also called the (1-dimensional) Wiener
process.

We give the proof at the end of this section.

The distribution of d-dimensional Brownian motion B; = (B}, ..., B) is a probability measure on
Wg 2 w;w € C([0,00) — R%),w(0) = 0, and this is called the d-dimensional Wiener measure.

The distribution of By is given as P(B; € dx) = pi(z)dx, where

1 2
pi(x) = ——e Y (o= (21, xq) € RY, |2 = \[22 4+ 22).
\/27rtd

g¢(x) is a density function of d-dimensional normal distribution Ng(0, ).
The characteristic function of this normal distribution if given as

#(2) = op,() = Ble= ] = T2 (z € RY),
where z - By = 21 B} + - - - + 24 BL.

Let
e lv—zl?/(2t)

1
pe(z,y) =pe(y — ) = ot

Then the finite dimensional distribution of the Brownian motion is given by the following: for 0 < t; <
ty < -+ <t, and Ay € B!,

P(Bi, € Av,.... By, € Ay) = / dyapr, (0,41) / Qe —ts (41, 2) - / dynpen—t, s (Ut ).
Ay

A2 An

In fact, by the independent increments letting tg = 0, we have

P(Bi, — By,_, € Ag,k=1,2,...,n) = H/A Doty (z1)dzy
k=1 k
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and by the change of variables zx = yr — yr—1 (yo = 0) we get the above equation. Here note that
{Bi, € A1,B;, € Ay} = {By, € A1,B, — By, € Ay — A1} where Ay — A; is a family of differences of
elements, and this is not the difference set; Az \ A;.

In the following (F;) is a standard filtration by the Brownian motion (B;) (basically, it is a one
dimensional BM except (9)),
[Properties of Brownian motions]

(1)

(9)

EB? = (2n—1)t", EB" ' =0 (n>1).

For 0 < s < t, B; — By is independent of F.

This is equivalent to independent increments. From this (B;) is martingale (described latter), i.e.,
0<s<t= E[B,— By| F;] =0

The covariance E[ByBs] =t As (s,t > 0).

A continuous process (X;) is a Brownian motion <= Y0 < s < t, E[e*(Xt=X:)| F,] = ¢~ (t=9)2"/2,
where (F;) is the canonical filtration by (X3).

The Brownian motion is invariant under the following transforms (a > 0 is a fixed):
Bj = Bayt — Ba, By = —By, S%(B); = VaBy,,
where S*(B); is called a scale conversion or scaling.

The total variation of Brownian motion in [T7,75] is infinite a.s., i.e., denote a division as A =
{te}; Ty = to <ty < - <t, =T, then

V= supz |Bi, — B, _,| =00 as.
A k=1

Ve >0, (By) has (1/2 — €)-Hédler uniform continuous paths a.s., i.e, for all v > 0,

B, — B, .
lim  sup M:Oorooa.s. ify<1/20rvy>1/2.
h—0 s#t;|t—s|<h ‘t_ s|’)’

Sample paths of Brownian motion are not differentiable at every time points a.s.

Let (Bt) be a d-dimensional Brownian motion and T be a d x d orthogonal matrix. Then (T By) is
also a Brownian motion. Moreover, let 75 := inf{t > 0; B, € S = S9~'} be a hitting time to the
sphere BRI S = 9B4(0, 7). Then the distribution of By, = B,(.)(w) is the uniform measure on S.

Furthermore, the Brownian motion (B;) has the following properties: (We omit the proofs.)

e X; =1B; is also a Brownian motion with X, = 0.

B

t10 P V/2tloglog(1/t)

Moreover, by symmetry, liminf; o is —1, and by scaling,

. B
lim sup

I A—
ttoo  V2tloglogt

a.S.

e Ve >0, (B;) has (1/2 — ¢)-Hodler uniform continuity a.s. as mentioned, more precisely, it satisfies

the following:
. |B; — Bs|
lim sup =1
h=0 osp(t—s|<n /2|t — s|log(1/[t — s)
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[The proofs of properties of Brownian motions] (1) Tt can be calculated directly, or by
differentiating the both sides of the characteristic function E[e?*P¢] = e~t2°/2,
(2) For 0 < 51 < -+ < 8, < 8 <t and for bounded Borel functions f(z), g(z1,...,z,), it can be seen

E[f(B: — Bs)g9(Bs,,-.-,Bs,)] = E[f(B: — Bs)|E[g(Bs,, ..., Bs,)]. In fact, if n = 2, then

E[f(Bt — Bs)g(Bs,, Bs, )]

= / flag — 23)g9(x1,24)ps, (21)Psy—s, (X1, T2) - - - Ds—sy (T2, 3)pr—s (23, T4 )dxy - - - dy
R4

/4 F(y2)g(x1,22)ps, (T1)Pso—s, (X1, 2)Ps—ss (Y1) Pt —s (Y2 )dx 1 dxody dyo
R

/ F(y2)pe—s(y2)dys / 9(@1,22)psy (€1)Psy —s1 (@1, 2 ) d1 d2
R R?
= E[f(B: — By)|E[g(Bs,, Bs, )],

where we use the change of variables of x4 —x3 = Y2, 3 — 9 = y; and fps,s,z (y1)dy; = 1. Thus, B, — B,
is independent of (Bs,, ..., Bs, ), i.e., 2, and hence, Fs.

Moreover, it can be taken as f(z) = x, and hence, E[B; — Bs| Fs| = E[B; — Bs] =0

(3) If 0 < s < ¢, then E[B,B,] = E[(B, — B,)B, + B?| = EB? = s.

(4) (=) is obvious from the above. (<) By E[e’*(X:=Xs)| F,] = e (t=9)2/2 for 0< 5y <o < 5y <
s < t and for a bounded Borel function f(z1,...,z,), we have

E[eiz(xt*Xs)f(Xs17~.-,Xsn)] = E[E[eiz(thXs) JT'.S]f(XSN""XS")]
2
ei(tis)z /2E[f(Xs1 PR ’Xsn)]'

Hence, X; — X is independent of F, and it is distributed by a normal distribution N(0, ).
(5) If we denote each transform as X, then it is enough to show E[e?*(Xi=Xs)| F,] = e~ (t=9)2*/2 and
to be a continuous process. However,they are almost evident.

(6) We may let [T1, T3] = [0, 1] by (5). B is uniform continuous at t € [0, 1] a.s., and hence,

5y = 121]5?” |Bi/n — Be—1)/n| = 0 (n — 00) a.s.
Let X,, = ZZ:l(Bk/n_B(k_l)/n)2 and Zj = (Bk/n_B(k—l)/n)Q_]-/n- Then EZ,% = 3/n2—2/n2+1/n2 =
2/n?%, and thus,

- 2
E(X,-1)?=> EZ} = ~ 0.
k=1

Therefore, ?{ny}; X,,, — 1 a.s. From these, we have

n
X
V:supE |Bi, — By, _,| > =™ = 0 as.
A 6n
k=1 k

(7) Since E|B; — B4|*™ = c,|t—s|" (¢, = (2n—1)!!), and by the Kolmogorov’s continuity theorem
(described at the end of this section), for Yy < (n—1)/(2n) — 1/2, (B;) is y-Holder uniform continuous.
Moreover, in order to show that it is oo if v = 1/2, we fix YL > 1 and let A4,, = {IB/n — B—1)/nl <
L/\/n,k =1,2,...,n}. By the scaling property we have P(| By, —B(x—1)/n| < L/v/n) = P(|Br—Bg_1| <
L) = P(|B1| < L) =: pr € (0,1). The independence implies P(A,) = p}. Hence, >, -, P(A,) < .
By Borel-Cantelli’s lemma, P(limsup A,,) = 0. Thus, it holds that with probability one, >N = N(w) >
1;%n > N,k <n, |B/n — B—1)/n| > L/+/n. By the arbitrariness of L > 1, we have the desired result.
(8) We may set the time interval as [0,1). The proof is done by the following steps:

P(EIS € [071)7332) <P U U Am,N =0,

m>1N>1
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where
n+1l i+3

An = (VU N {180 =800l < 5

n>N i=1 j=i+1

First, if Zsq € [0, 1];3320, then

Hmz 173t0 >SO;|Bt_Bso| ém(t—80)7 t e [So,to}.

Moreover, if sp = ([nsg] + k)/n,1 < k < 4, then sg < 51 < --- < 54,84 — 50 < 4/n and °N > 1;"n >
N, si € [s0,t0]. Hence from the above, we have for each k = 2, 3,4,
8m
|Bs, — Bsy 1| < |Bs, — Bso| + |Bsy — By, ;| < 2m(s4 — 89) < o

That is, "m, N > 1;"n > N, if we set i = [nsg] + 1, then 1 <i <n+ 1 and |Bj/n — Bij—1y/nl < 8m/n
for j =i+ 1,4+ 2,i + 3. Therefore, we have the first inequality. Next, it is enough to show Ym, N >
1, P(Am,n) = 0. By a simple calculation,

8m 2 8m/n 2 2 8m/v/n 2 C
P \Bjm—Bi-1yn| < — | = —F—= e ” /(2/”)6195:—/ e " Py < —.
(\ j/m = Bi—uym| < n) Tr/n/o 5 ), <

Thus, we have

n+1 j+3

i 8m
JS%P U ﬂ {|Bj/n—B(j1)/n|Sn}.

i=1 j=i+1

nt+l i+3 8m o3
hnn_l)loréfz H P <|B]-/n — Biji—1y/nl < n) < nli_}rrgo(n—i— 1) (ﬁ) =0.

i=1 j=i+1

IN

P(A;.N)

IN

|

(9) The first of half can be immediately obtained by calculating the characteristic function of the

increments of finite numbers of time points. In fact, for z,2 € RY, by (2,Tz) = (!Tz, x), we have, for
0<ty<t;<- <tz € RUk=1,2,...,n),

E

n
exp {iz<zk7T(Btk - Btk1)>}] — e Sy te—te— )" T2k|* _ e~ Zgzl(tk—tk—l)\sz.
k=1

Thus, if we let every component of z;, be 0 except z;, then the j component of (T'B;) is a one-dimensional
Brownian motion, and the above last expression is equal to the product of the each forms. Hence, the
independence of each components holds.

On the later half, for any orthogonal matrix 7', let 7Z be the hitting time to S of T'By, then 7 = 7g.
By the above result and the uniqueness of the distribution of Brownian motion we have that for YA € B(S5),

P(Brs € A) = P(T(B),1 € A) = P(TI(B)+; € A) = P(T(By;) € A) = P(B,, € T"'A).

This implies pg(d¢) := P(B;, € df) is a rotation invariant measure on S. Moreover, if ¢ — oo, then

P(B; € B(0,1)) :/ pi(x)dr — 0. Thus, we see P(ts < o0) = 1 and we get pug(S) = 1. (If
B(0,r)

P(ts = o0) > 0, then 0 < P("t > 0,B; € B(0,7)) < limsup, ,. P(B; € B(0,7)) = 0. This is

inconsistent. u

[Construction of Brownian motions| It is well-known that there are 3 ways, however, we give
the simplest way.

It is enough to show the case of ¢ € [0, 1]. Because the case of [0, 7] is the same, and by the uniqueness
it is possible to extend to [0,00). Let D = J,,~,{k/2";k = 0,1,...,2"} be the family of all binary rational
numbers in [0, 1]. -
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First, by using Kolmogorov’s extension theorem to the probability space on R*, a probability
Py can be constructed on RP (3 w = w(t) : D — R is a function) such that the every finite dimensional
distribution of X;(w) = w(t) is the same as the Brownian motion.

Furthermore, it is possible to show that (X}) satisfies the conditions of the following Kolmogorov’s

continuity theorem. Hence, (X;) is uniform continuous on D a.s., and X; = lim,+.,e p X, is continuous.
Thus, B; = X; is the desired one.

Theorem 1.3 (Kolmogorov’s continuity theorem)
(1) Let D = U, >1{k/2";k = 0,1,...,2"} be the family of all binary rational numbers in [0,1]. In
general, if a stochastic process {X;}iep on a Banach space (B, | -||) satisfies

EIC,O[,B > OvE”Xt - XSHQ < C|t - s|1+ﬂa

then X; is uniform continuous on D a.s.
(2) If {Xt}ieo,1) satisfies the above inequation for Vs,t € [0,1], then there exists a continuous modi-

fication {Z}te[o’l] uniquely, and it is y-Hélder uniform continuous a.s. for "y < /a; i.e.,

. 1Xe = Xl _
lim sup =0 as
h=0 gtit—s|<hn |t — 8|7
Proof.  For simplicity, we denote || - || = |-|. Fix 0 < v < § < B/a and set A, = 1/2". Note

8 —ad > 0.
(1) By a simple calculation,

2n a 2n
Yy (an _A)g(k—l)An|> <3S catE-ed) 037 AB-e0 < oo,

n>1k=1 n>1k=1 n>1

Thus, the inside of the above expectation is finite a.s. and hence,

on

. [Xka, — Xe—1a,\*
nh_)n;oz ( Afl =0 a.s.

k=1

Therefore,
P (HTLO;Vn Z nOvvk = 132a .. '72n7 |XkAn - X(k_l)An| < Afl) =1

We denote this event as Qg; P() = 1. On Qp, we can see that
(1.3) Fng;Yr, ' € D0 <1 —1' < Apy, | Xy — Xo| S C' |1 —1)°

with ¢’ = 2/(1 — 27%), and hence, (X;) is uniform continuous on D. In fact, 7n > ng; Ay < r —
r" < A, and r,r’ are in the same interval [kA,,(k + 1)A,], or each is in adjacent intervals ((k —
DA, kAL, (A, (K + 1)A,). In case of ;7" € [kA,,(k+ 1)A,], we estimate |X, — X.v| < | X, —
Xia, |+ |Xka, — X,|. At first, by using binary notation we denote r — kA, = e1Ap1 4+ +pAnip
(Cp > L,e;, = 0or 1). Let rg = kA,,r; = kA, +e1ps1 + - + 64045 (5 = 1,2,...,p). By
rj —71j_1 = €;Ant; < Apgtj, we have, on Qg

| X — Xka,

p e’}
< Z |XTj - X'fj—ll < Z Afz+j = Afﬂrl/(l - 2_6)'
j=1 j=1

| Xka, — X,| satisfies the same estimate, and hence, (noting r — ' > A, 1)
X, — X <240 /1 —27%) <2(1—27%) " r — o0

In case of r € ((k — 1)A,, kA,),r" € (kA,, (k+1)A,), by kA, —r,r' — kA, < A, and by using
binary notation, we can get the same estimation.
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Therefore, (1.3) holds.
(2) By (1), X; is uniform continuous. Define X; as X; for ¢t € D, and X; = lim,ep.., for t ¢ D.
Then it is a continuous process and

3no;vs,te[o,u0<t—s< - X = XL <t =8

holds. By v < § < 8/« it is obvious that it has a 'y—H('jlder uniform continuity. Moreover, for ¢t ¢ D, if
we take r, € D;r, | t, then

E|X; — X,|* < lin_1>infE|5(Tn — X;|* < Climinf|r, —t[**% = 0.
n oo n—oo

Thus, "¢ € [0,1], P(X; = X;) = 1, that is, (X;) and (X;) are equivalent, and this continuous modification
(X¢) is unique in the sense of strong equivalence. [ ]

1.4 Markov processes and martingales

(X:) is a Markov process (MP) &% Forall 0 < s < t and for all bounded Borel functions f,

E[f(X:)| Fs] = E[f(Xy)] Xs] a.s. Moreover, if (the above)= E[f(X:—s)| Xo = ]|s=x. a.s., then it is
called a time-homogeneous MP) More precisely, let (X, P,) be a Markov process staring from z;
P, = P(:| Xo = ), Then, it is time-homogeneous if and only if for all x, E,[f(X:)| Fs] = Ex.[f(Xi—s)]
a.s.

When F; = F := 0(Xs;s < t), the above definition is that
for0<s;<:---<s,=s<t ay,...,ap €R,

[ (Xt)| XS1 = ala"'aXsn < an] = E[f(Xt)| Xs < CLn].

-

Moreover, it is time-homogeneous if and only if (the above)= E[E[f(X;—s)| Xo = z]
That is, for all z,

Ea;[f(Xt)‘ X51 <ai,... 7Xsn < an] = lz‘w[l?XS [f(Xt—S)H X < an]-

If a Markov process is on a discrete space, then it is also called a Markov chain.
A countable set S valued stochastic process (X;);>0 is a continuous-time Markov chain if ti has
the following Markov property; For all s,t > 0, i,7, ks € S,0 < up < s (£ < £p),

P(Xirs =J| Xs =1, X0, = ke (£ <4py)) = P(Xpys = 7| Xs =1).
Moreover, the following is a time-homogeneous property;
P(Xeys = j| Xs =) = P(X¢ = j| Xo =)

We denote this as a transition probability ¢.(i,7) = P(X; = j| Xo = 1).

Theorem 1.4 A Poisson process is a continuous-time Markov chain.
It is clear by the following question.

Question 1.2 In general, for a countable linear space valued continuous-time stochastic process, if it has
independent increments, then it is a Markov chain.

Answer. Let X; be a stochastic process satisfying the assumption. For 0 <t <to < -+ <t, < tpy1,
the independence of Xy , Xy, — X¢,,..., Xy, — Xy, implies X; ., — X, (X4y,...,X;,) are independent,

n+1

and X;, ,, — X3, , X;, are independent. Hence, these imply the Markov property;
P(th+1 :jnJrl‘ th :jkalgkgn) = P(th+1 _Xt :jn+1_.jn| th :jkvlgkgn)
= P( tng1 — = Jn+1 _]n)
= P(X tnt1 = Jn+1 *Jn| th = ]n)
= P(X,,, = Jn+1\ X, = Jn)-
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[Markov property of Brownian motions]
For a Brownian motion (By, P) starting from 0, (z + B;) is a Brownian motion starting from z. We

denote the distribution as P, on (W = W< W). Then (x + B;) is changed to (B;). Under P,, this is the

same as By(w) = w(t),w € W and P,(By = «) = 1 holds. That is, (B, Py) @ (x+ B, Pp) and P = P

hold.

For the filtration, let N = {N € W;"z € R%, P,(N) = 0} and the canonical filtration is given as
Fi = FY VN with F = 0(Bs; s < t). The right-continuous filtration is given as F; = Fyy := NesoFpie-
Then, it holds that F; = F; (it is shown later). .

For each s > 0, a shift operator 6, on W is defined by 0sw(t) := w(t + s).

Theorem 1.5 (Markov property for (F;)) Let Y be a bounded W-measurable function. "z €
R?, Vs >0, it holds
E.[Y o8| Fs] = EB,[Y] a.s.

For a bounded Borel function f and 0 < s < ¢, if we let Y = f(B;_s), then Y 0§, = f(B;) and the
above equation is E,[f(Bt)| Fs| = Ep,[f(Bi—s)] = E[f(Bt—s)| Bo = ]| z=p,. This implies (B;) is a
time-homogeneous MP

Proof. Let f, f; be bounded Borel functions on R! and for each Y = f(B;), [Tj<n f5(Be;) (0 <t <
-+ < ty,) if we show the result, then for a general bounded W-measurable Y, it can be obtained as a
limit of linear combinations of the second forms, and hence, we can get the desired result.

If Y = f(By), then it is enough to show the case of f(z) = ¢*** (Y2 € R). That is, Y = €**5¢ and
Y 06, = e**Bits. Thus, we have

Ew[eiZBt+S| ]_-S] — Ew[eiZBSeiz(BHS_BS)‘ ]_-S] — eiZBsEo[eiZB"] = F, [eiz(x—i-Bt)] L — EBS [eith].

IfY =][;<, fi(B:;) (0 < t1 <--- <ty), then the result can be shown by the induction on n. We
assume it holds for n, and show the case of n + 1.

Ey[Yob,| Fs] = E; |E; H fi(Bys)| Frits || Fs
L j<n+l1
i n+1
= B | i(Buss)Ba, o, | [] £i(By—u) || Fs
=2
i n+1
= Ep, |A(By)Es, | ] fi(B,-t)
L J=2
- .
= Ep, |ABy) ] fi(By,)| = Es.[Y].
j=2

Here we use the assumption of the induction in the second line and use the above result in the third line
noting that the following is a bounded Borel function;

n+1 n+1
f@)=E: | T £iBe,—1) | = Eo | [] i@ + Br,—1)
j=2 j=2

In the fourth line, we also use the assumption of the induction under the conditional expectation of F, .
|

The above Markov property also holds for (F}).
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Theorem 1.6 (Markov property for (F;)) For a bounded W-measurable function Y and for
Vee RY Vs >0,
E,lY 00| FJ] = Ep_[Y] a.s.

Moreover, this implies F} = F;.

Proof. We first show F; = F; by usmg the Markov property. Let YA,B € F! and set Y = 1p,
Y = Ep_[15]. It holds E,[1p; A] = E,[Y; A], ie., E;[(1p —Y); A] = 0. Since Y is F,-measurable and
Ae Flis arbltrary, we have 15 = Y a.s. Hence, 3§ € .FS,N eEN;B= BUN €€ F,. (In fact, noting
that N = {1p # Y} eN, {13 = Y} Ne¢e F,, 1g = Y1xe + 1pnn and the 1st term is F,-measurable
and take 0 or 1, we can take B = {V 1y = 1}.) Thus, Fost C F,.

Next we show the Markov property. Set Y = f(B;) with a bounded Borel function f. Ye > 0, A € Fy .
implies E.[f(Biyste)| Fstel = Ep,. [f(Be)] as., that is, E,[f(Bits+e)la] = E[Ep,  [f(Bi)la). If
€ | 0, then by the continuity of BM, the boundedness of f and by using convergence theorem, we have
E.[f(Bi+s)la]l = E.[Eg,[f(B¢)14]. Therefore, we can extend to bounded Borel functions Y as above. B

Theorem 1.7 (Blumenthal’s zero-one law) For all A € Fy = F§, P(A) =0 or 1.
Proof. If A € Fy, then
Py(A) = Ex[1a] = Ez[Ez[14 0 00]; A] = Ey[Epy[1a]; A] = Eg[Pp(A); A] = PI(A)2~

Hence, P,(A) =0 or 1. [ |
From this result, the one-dimensional Brownian motion (B;) staring from 0 moves immediately to
positive (and hence, to negative), that is, for 7(g o) := inf{t > 0; B; > 0}, P(7(9,0c) = 0) = 1 holds.

(X,) is martingale €% For all 0 < s <t, X; € L' and E[X,| F,] = X, a.s.

We often use (M;) as martingale, so the above conditions are M; € L', E[M;| F,] = M a.s.

Then, the means are constant; EM; = EM,.

If E[X;| Fs] > X, as., then it is called as sub-martingale. Then, the means are increasing;
EXy < EX, < EX;. Moreover, if the inverse inequality holds, then it is called as super-martingale).

Theorem 1.8 (Doob-Meyer decomposition) If (X;) is continuous sub-martingale and if it is in

class (DL), i.e., Ya > 0, {X,ra}+ is uniform integrable (where T is a stopping time el vy >0,{r <
t} € Fi), then Xy = Ay + My such that (My) is continuous martingale, and (A:) is continuous increasing
process; Ag = 0. This decomposition is unique.

For a sequence of stopping timess 7,,; 11 oo a.s., if (Xiar, ) is martingale, then (X;) is called a local
martingase.
If M is a family of all martingales, then the family of all local martingales is denoted as M.

Martingale is an important notion and stochastic integrals are continuous or rcll martingales. In that,
L?-martingale plays a key role, however, in the jump type, we also treat L'-martingale.

Therefore, we assume at least that martingale is rcll and in L'. The results of discrete-time martingale
can be extended to the case of continuous-time martingale by using right-continuity.
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2 (-spaces and D-spaces

A Polish space is a complete separable metrizable topology space, that is, it is isomorphic to a complete
metric space which has a countable dense subset.

d-dimensional Euclid space R? and open interval (0,1) are isomorphic to R!, and hence they are
Polish.

Let I be an interval of R! and denote the all mappings f: I — R as R’.

The following function spaces are Polish, each is called C-space or D-space.

C =C(I)={f € R : continnous}, D = D(I)={f € R’ : 1st kind of discontinuous},

where f : I — R is 1st kind of discontinuous means that f is right-continuous at each points of I except
the right-point and has left-hand limits at each points of I except the left-point.

2.1 (-spaces and uniform convergence topology

The C-space C' = C'(I) which is a family of all continuous functions on I is complete separable under the
following metric if T is compact, i.e., I = [a,b] (—o0 < a < b < 00). its topology is called the uniform
convergence topology.

du(f,g) =sup|f(t) — g(t)|.
tel
If I is not compact, then =1, = [a,,b,]; I = |J I, and it is separable and complete by the following
metric: Its topology is called local uniform convergence topology.

du(f.g) =Y _27"(1 A sup |f(t) — g(t))).

n>1 tel,

The completeness is well-known and it is easy to see. On the separability, by Weierstrass’s polynomial
approximation theorem, we see that the family of rational polynomials is dense, and hence, C' is separable.

Question 2.1 Show the above results.

2.2 D spaces and Skorohod topology

The D-space D = D(I) which is a family of first kind of discontinuous functions on a interval I is complete,
however not separable under the uniform convergence topology. (You may consider f, = 1j9,qjnr (o > 0).)

However, it is Polish under the Skorohod topology determined by the Billingsley’s metric.

When I is compact, i.e., I = [a,b] (—00 < a < b < x0), D = D(I) is complete and separable under
the following Billingsley’s metric dp.

Let @ be a family of all isomorphic mappings such that preserving the order. For ¢ € ®, set

M) = sup |log 7(’0(2 : f(s)

s#t

and p € ¥ PN Ap) < co. We define

dp(f.g9) = ;gg{llf 09— glloo + Alw)}

Note that the following metric dg determines the same topology (which is called the Skorohod
topology. Under dg, D is separable, however not complete.

ds(f,9) = WE{[f 0@ = glloo + [l = illoc}-

If I is not compact, then D can be complete and separable by a similar way to C.
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2.3 Continuous processes and discontinuous processes

A stochastic process (X;) is called continuous-type if it has continuous sample paths X. a.s. If it has
discontinuous sample paths a.s., then it called discontinuous-type, however, we omit the explosion paths
and right-discontinuous paths. The discontinuous means right-continuous and having left-hand limits,
i.e., rcll=right-conti. has left-limit, or cddlag (French). It is called first kind of discontinuous.

If it has explosion at a time T > 0, then it is enough to consider for ¢ € [0, T). If it has right-hand limit
and it is right-discontinuous, and left-continuous at a time point, then it is possible to be right-continuous
and to have left-hand limit, hence, it is not essential. Moreover, if it is left-continuous at every point,
then the future is determined by the previous value. So it is not so interest.

The Brownian motion is a continuous Markov process and it is a basic and central process in
continuous-type.

The Poisson process is the simplest jump process, however, it’s just one example of jump-type, and
the following Poisson random measure is an important tool.

2.4 Poisson random measures

Let (Z, Z) be a measurable space and A(dz) be a o-finite measure on it.

N(dz) = N(w;dz) is a Poisson random measure on Z with a mean measure A PN
(1) For a.a. w € Q, N(w;dz) is a measure on (Z, Z).

(2) YA € Z, if A(A) < oo, then N(A) is a A\(A)-Poisson random variable, i.e., it is distributed by a
Poisson distribution with a parameter A(A). If A\(A) = oo, then N(A) = co a.s.

(3) If A,, € Z are disjoint, then N(A,,) are independent.

By (2), N(dz) := E[N(dz)] = A(dz).

In this text, we set Z be a time-space, i.e., Z = [0,00) x R™ 3 (t, 2), Z = B([0,00) x R™) and let
v(dz) be a measure on R™ such that v({0}) = 0 and that "n > 1,(]z| > 1/n) < co (hence, v is o-finite).
Then v is called a Lévy measure.

In this case, N(dtdz) is a dtv(dz)-Poisson random measure.

We have the following result.

Proposition 2.1 Let (14,&) be the point masses of N(dt,dz), i.e.,
N(dt,dz) = bz, ¢,)(dt, dz).

Then, “k,j > 1, P(ty # ;) = 1. That is, N(dt,dz) has only one point mass at most at the same
time-point. P("t > 0, N({t} x R™) =0 or1) =1.

This comes from the continuity of the time-part of the mean measure.

For simplicity, let R™ = R!.
We first give the construction of dtv(dz)-Poisson random measure.
For any fixed ' > 0 let t € [0,7] and set Zy = {|2| > 1}, Z, = {1/(n+ 1) < |z| < 1/n} (n > 1).
Yn >0, let v, =v| z, . and
— A(dt, dz) dtv, (dz)
Ap(dt,dz) = =
(4 d2) = S0, T % 22) = Tolz)

Let {Y;* = (71,&})}x>1 be independent random variables distributed by this, i.e., P(Y," € dtdz) =

An(dt,dz). Moreover, let K,, be a Tv(Z,)-Poisson variable, and {Y;", K,,;n > 0,k > 1,m > 0} be
independent. We define

(Mdt,dz) == dtv(dz)) on [0,T] X Zy.

K, K,
Np(dt,dz) = Syn(dt,dz) = laa-(Yy"), N=D N,
k=1 k=1

n>0

This N is a desired random measure.
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Question 2.2 Show the above result.

Note that N,,(A) =k, K,, = m > k means k numbers of Y.* are in A and the rest m — k numbers are
n ([0, 7] x Z,)\ A. We can see that N, (A) is a A(A)-Poisson variable. The sum of independent Poisson
variables is again a Poisson variable, and the other properties are obvious.

In fact, we have

P(Nu(A)=k) = 3 P(Kn=m Ny(A) =k Ny(A7) = m—k)
m>k
= e—TD(Zn)W A= Ve[ Acym—k
= mzzjk — <k>>\n(A) An(AS)
e (An(A))F
kO

(Note that A, (A) + A, (A4%) = A([0,T] x Z,) = Tv(Z,).)
On the other hand, the sum N7 + Ns of independent \;-Poisson variables N; (i = 1,2) is again
(A1 + A2)-Poisson variable by due to

)\1 e~ 2 /\g_k — e~ (M1t+A2) (Al + )\2)n
k! € (n—k)! n!

(Proof of the above Proposition)

The point mass (7;,&;) of N is the same as Fn > 0,7k > 1; (7], £2). Hence, it is enough to show that
for any n,m > 0,k,j > 1;(n, k) # (m, j), P(ry # 7]*) = Lie, P(rj! = 7j") = 0. We fix YM > 1 and
divide [0, 7] into M equal parts, i.e., set Z,, = [(({ — \)T/M4T/M) x Z,, (1 <{ < M) and Z, p =
(M —=1)T/M,T] X Zy. Then, A\, (Zn ) = 1/M. Therefore, if 7" = 7/, then 3¢; 7 € [(—1)T/M, (T /M).
Thus, Vi = (70",&8) € Zne, Y™ = (7]",&]") € Zn e By the independence of Y}, Y™, we have

M M
— 1
P(TI?:T]m)SP<U {YkneZn,é;ijGZm,é}> SZ n€>\ m,@):M%O-

=1
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3 Stochastic Integrals

3.1 Ito integrals by Wiener processes

In the following, let(€2, F, P) be a complete probability space and (F;):>0 be a right-continuous filtration
containing all null sets. Let (B;):>0 be an (F;)-Brownian motion (simply, we denote a BM); By = 0 a.s.

and ¢ € [0,7] denote the time (we extend to ¢ € [0,00) at the end).

We define f = f(t) = f(t,w) € L2 L (f(t))t0 is (Fi)-adapted on [0,T] x © and L3-integrable

under dtP(dw). We shall define a Ito integral (continuous-type stochastic integral) as

[ 1w = [ spam, e

Moreover, f is finally extended to the following:

f=ft)=f(t,w) e L} BN f:]0,00) x @ — R is measurable and (f(t))¢>0 is (F;)-adapted,

loc

t
/ f(r)?dr < oo a.s. for ¢t > 0.
0

Stochastic integral can not be defined like Riemannian integral for each paths (i.e., for each w), because
a BM does not have a bounded variation. Hence, it can be defined under the measure dtP(dw), for from
right-continuous step functions to f € £2. by using L?-approximation.

Now we define the following;:

- A defining process f(t,w) = fo(w)1l(ap(t);a < b;a,b € [0,T], fq is bounded and F,-measurable.

- A step process f € S is a finite sum of defining processes with disjoint time intervals, i.e.,

f(taw) = Z ftk—l(w)]‘(tk—lvtk](t)7
k=1

we simply denote
f(t) = thkfll(tk—l,tk](t)7
k=1

where 0 =ty <t; <---<t, =T, fi,_, is bounded and F;, ,-measurable.
The norm || - |7 is defined as

T
172 = / Ef ()%t

Proposition 3.1 S: dense in L2 under | - ||z, i.e., Vf € L2, f,, € S;||f — fullr — 0.

In the proof of this, we use the result such that if a measurable stochastic process (f(¢))¢>0 is (Fi)-
adapted, then it has a progressively measurable version, where (f(t)):>0 is progressively measurable
means for 't > 0, (s,w) € ([0,¢] x Q,B[0,t] ® F;) — f(s,w) € (R, B') is measurable.

If we would not like to use this result, we assume Fprogressively measurable” instead of “(F;)-adapted”
in the definition of £%.

Proof. For f € L%, by J1{fj<n} We may assume f is bounded. Furthermore, for Ve > 0, by
considering the following we may assume [ is continuous; Let

1

fe(t,w) = f/ f(r,w)dr Then f. — f in LZ.
€ J((t—e)Vvo0,t]

(Using the result that in general g, € L?([0,T]) is L?-continuous, i.e, f[O,T] lg(t + ) — g(t)|?dt — 0 as

¢ — 0. This holds because C. C L? is dense.) Here, note that f. is (F;)-adapted by the progressively
measurability. Therefore, for bounded continuous f € L%, set

- k
fn(t,w) = f(0,w) 10y (t) + Zf(tk—law)l(tk,l,tk](t), ty = =T.

n
k=1
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Then f, € S and ||f — fn|]l7 — 0 hold. [ |

(Note) A right (or left) continuous (F3)-adapted process is progressively measurable. In fact, for a
fixed t >0, fu(r,w) = f(0,w) 10} (r) + > pry f(te, W)ty 100 () (te = £t) are BY([0,t]) ® Fy-measurable
and converge to f a.s. by the right-continuity, thus the limit f is so too.

For a step process f(t) = >y fe,_y Lty (£), define

t n
= / f(r)dB, = Z Jto1 (Beunt — Biy_ i at)-
0 k=1

Remark 3.1 In the first edition of Funaki [2], the same definition is given for a right-continuous step process
F@) = 371 fremi Lty 1) (). This give the same definition of stochastic integrals, by a BM (or continuous
martingales). However, for the definition of stochastic integrals by Poisson random measures, we need left-
continuous step processes. Moreover, we extend f to (Fi)-predictable processes. Note that if f(t,w) is measurable
t
and (F)-adapted, then it has (Fi)-predictable version, so we may restrict to it here. In fact, lim sup/ flryw)dr
0

t—e
is a predictable version.

We have the following;:

t
Proposition 3.2 {M;(f)} is continuous and EM;(f) = 0, EM(f)* = / Ef(r)dr. If s < t, then
0

E[M:(f)] Fs] = Ms(f) a.s.,
]:S] = /08 f(r)dB, a.s.

E/f )dB, —OE(/f dB) :/OtEf(r)2dr7E[/0tf(r)dBr

That is, let M2 be a family of all continuous L?-(integrable) martingales, then {M;(f)} € M2, and

(M(f), M(g)) = / F(r)g(r)dr

About (M(f), M(g))s, if (M;),(Ny) are continuous L2-martingale, then M2 is continuous sub-
martingale and is in class (DL). Hence, by Doob-Meyer decomposition, F4; is a continuous increasing
process; Ag = 0, M?— Ay is martingale. It is denoted as A; =: (M), and called by a quadratic variation
process of (M;). moreover, let

(M, N} 2= Z((M + N}, — (M = N).) = 2 (M + N — (M), — (N),)

This has bounded variation and M;N; — (M, N); is a continuous martingale. It called by quadratic
variation of (M;) and (N;). It holds that for A;0 tg <ty < -+ < t, =t, RO D ILD.

M), = i (M — My ) (i b.
(M) IAlg();( tr ti_1)” (in prob.)
For a BM, (B); =t.
Proof. If f is a defining process f(t) = fo(w)1ljap)(t), then M(f); = fa(Biap — Bina) is continuous
and M (f)o =0.
We show the martingale property; for 0 < s < t, E[M(f):| Fs] = M(f)s a.s. Since

E[M(f)t - M(f)s| JT"&] = E[fa(Bt/\b - Bt/\a - Bs/\b +Bs/\a)| ]:5]7

if s < a, then E[E[f.(Biary — Bina)|l Fall Fs] = E[faE[(Btrs — Bina)| Fal| Fs] = 0, if s > a, then
E[fa(Bt/\b — BS/\b)‘ ‘Fs} = fCLE[Bt/\b 9/\[)‘ ‘F] = 0. Hence E[M(f)t — M(f)s| ./—"s] =0 a.s. On a
quadratic variation, it is enough to show

7] =0

B | M(#).M(g)s — M(f):M(g)s — / F(r)g(r)dr
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In fact, from this, we see (M(f))s = /75 F(r)2dr, (M(f +g)) = /t(f + ¢)?(r)dr, and thus, we have the
0

result. Let g(t) = g.1jc,q)(t) and we may set @ < c. Then the abovg result can be shown by the same way
as above according to s < ¢, s > c. |
If f € £2, then by approximating of step processes f,,, (M (f,):) is a Cauchy sequence in L?*(dP). By
completeness of L?(dP) there exists a limit M (f); and it is a continuous process (M (f):) (see the end of
this subsection). A stochastic integral fg f(s)dBs is defined by this M (f);.
It holds that the following:

Theorem 3.1 For f, g € L%,

(0= [ tf(r)dBT)teMé,m M) = [ 1

Moreover, if f € £ ., then set

loc?

o, = inf {t > O;/t f(r)?dr > n}
0

and f,,(t) := f(t Aoy) € L2, we can define M(f); = im M (f(- A o,)):. (Noting that "w,?N = N(w) >
1;9n > N,0,(w) = T.) Then, it holds that M(f)ino, = M(f(- Acn))s. Moreover, (M(f)) € MS;L”C is a
continuous local L?-martingale starting from 0.

Proof of “(M(f):) is a continuous process”:

In general, for a rcll martingale (My), let | M5 := supg<;<p | M|, then the continuous time martin-
gale ineqq. [|[|M|%, < p/(p—1)||Mr|l, (p > 1) holds. (In fact, by using discrete-time sub-martingale
inequality (see Th.3.6, Cor. 3.2 in [3]), we have aP(sup;ci 7jnq |Mi| > a) < E|Mr|, and by right-
continuity it holds aP(sup,«r |M;| > a) < E|Mr|. Moreover by using this and by the same way as in
the case of discrete-time, we have the desired inequality.)

Furthermore, by using Borel-Cantelli’s lemma, we can show that 2(M;): a continuous process,
I maks M (f) — Mlz — 0 as. ( — 00). In fact, by [[M(fa) — M(ful5l3 == E[(M(fn) —
M (fm)|5)?] = 0 (m,n — 00) F{mi}; P(IM (fimyyr) = M (fm, )3 > 1/2%) < 1/2% and bu B-C’s Lem., we
have Y0 > k > 1,|M(fm,) — M(fm )| < 32525 1/27 < 1/2871 - 0 (k — 00) as. That is, M(f,) is
a Cauchy seq. in C([0,T]) a.s. and by the completeness of this sp. 2M = M(f): a continuous process;
M = M{fm )5 = 0 2.

Moreover we can show

BI(|M(fn) = M()|7)?] < 4 im [ M(fn)r = M(fm,)rll3 = 4 lim | fn = fui 7= 4l fo = fIF — 0
—00 —00

In fact, for an fixed Yn > 1 and the above subseq. {my}, |M(fn)—M(f)5 < lim, ,  [M(fn) =M (fn)l5

Furthermore, by Fatows Lenn., |[lim, . [M(fa) — M (fm )53 < T o [1M(Fa) — M58 <

WMy — M(f)7l3 = 1mngsoe A0 — frng I3 = Al fa — £13. Therefore we have [[(1M(fn) —

MO < 4l fa = flIF =0 (n— o0).

[Another Proof (unusing Borel-Cantelli’s lemma)]

For each fixed t € [0,7], {M(f,):} is a Cauchy seq. in L?*(dP). Hence there exists a L>-limit
M, = M(f);. Let D :=[0,7] N Q. We can take a suitable subsequence {my} by diagonal method such
that “Vr € D, M(fm,)r — M,” as. In fact, let D = {r;} and we take {mq ;}; M;'"* — M,, a.s. Next
we take {max} C {mix}; Myy>" — M,, a.s. and take {m;}. Let my = my , then | M(f,,, ) converges
for all » = r; with probability 1.

Moreover, let M™ = M(f,) and |M|}, := sup,cp |M,|. By Fatou’s Lem.,

M7 = MBI < | Jim M7~ M™ p3 < Jim 117" = M™ (L3 < 4| fn — fllF — 0 (n — 00).
— 00

— 00

Thus, ?{ny} such that |M(f,,) — M|% — 0 a.s. and {M,},cp is continuous in D.
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Hence for each t € D¢ :=[0,T1NQ°, set My := My, then [M(f,,) — M5 = |M(fn,) — M|} — 0 as.
(by this, {M; = M(f):} is continuous in [0,7T]), and we have ||M(f,) — M|%|l2 = I|1M (fr) — M|}z — 0
(n — 00). [ |

By the above proof for M = (M) € M2, restricted in ¢t € [0, 7], if we define a norm || M| = || M||} :=
|| M 5]z = (Elsup,<q | M¢]?])'/2, then M%)O is complete.

In the next subsection, in case of stochastic integrals by a compensated Poisson random measure, the
limit is rcll because an approximate sequence is so.

Question In the above proof, show the existence of M,y for t € D¢ := [0,7] N Q¢. (We have the
same result in the case that M™ = M (f,) is rcll.)

[Ans.] It is enough to show the case that M™ is rcll and |M — M™|5, — 0 (n — oo) holds. Set
Df(t):={reD;t<r<t+1/2"} and let

My := lim inf M,, My =lim,o sup M,.
n—00 re Dt (t) reD; (1)

We may show M, = M, ,. However, this is easily obtained by using M™ =X M on D and M,, is 1-c.

3.2  Stochastic integrals by Poisson random measures

Let v(dz) be a Lévy measure on R™, i.e.,
v({0}) =0,"n > 1,v(|z| > 1/n) < oo

Let N(dt,dz) be the dtdv-Poisson random measure, that is, it is a Poisson random measure on [0, co) x R™
with a mean measure N (dt, dz) := E[N(dt,dz)] = dtv(dz) For a given filtration (F;) and for any 0 < s <
t,U € B™, N((s,t] xU) is independent of F5. Moreover, let N := N —N be the compensated Poisson
random measure).

Let {(7%,&k)} be the point masses of N(dt,dz), then

N(dt,dz) = 6z, ¢,)(dt, dz).

{7} take a.s. different values, and the number of k such that |{x| > 1/n is finite.

Let f(t,2) = f(t,z,w), g(t,2) = g(t, z,w) be Ri-valued and (F;)-predictable in (t,z,w) € [0,00) x
R™ x Q, i.e., let P be the smallest o-field such that the following functions h(t, z,w) satisfying (1), (2
are all measurable. Let f, g be P-measurable. Then f, g are called (F;)-predictable.

(1) Y(z,w), t = h(t,z,w) is left continuous. (2) Yt > 0, (z,w) = h(t,z,w) is B™ @ F;-
measurable.

(Remark) The stochastic integral by a Poisson random measure can be defined by using the in-
dependence of N((s,t] x U) and F;, hence left-continuous step functions are basic. Therefore, they are
extended to the predicatable functions.

Moreover, let f, g satisfy the following integral conditions;

t
Yt >0, / dr/ |f(r,z)|v(dz) < 00 as.,
O m

t
Yt > O,/ dr/ lg(r, 2)[Pv(dz) < 0o as.
0 m

where fot = ot-t = f(O,t]' By a similar way to the continuous case, let

Ny = inf {t > 0; /Ot dr/ B |f(r, 2)v(dz) > n} , On = inf {t > 0; /Ot dr/ - lg(r, 2)|?v(dz) > n}
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and for any fixed ¢ > 0, by changing 0 < r <t to r An,, r A 0, we may assume the followings:

t
Yt >0, / dr/ E|f(r,2)|v(dz) < oc.
0 m

t
Yt >0, / dr E|g(r, 2)*v(dz) < o0
0 R™
First, define
X = / flr,2)N(dr,dz) Z I (i, Ex).
Rﬂl

k; Tk<t

Then, for 0 < s < t,

B )= X+ [ [ Bl Rlarutas),

and

t
E|X] S/o dr E|f(r,2)|v(dz) < o0

Rm
If g satisfies

t
Yt > O,/ dr E|g(r, 2)*v(dz) < o0
0 R™

Y: = // (r, )N (dr,dz) —L—hm// g(r, )N (dr,dz).
m nreo \>1/n

In this case, Y; is rcll L2-martingale with mean 0, i.e.,

E [/Ot/ g(r,z)N(dr,dz) ‘fs} _ /05/7”9(707 2)N(dr,dz),
(/ /m r,2)N(dr, dz)” /dr - Eg(r,z)*v(dz).

(Note that this is rcll by the same way as in the case of Ito integrals by Brownian motions because of an
approximate sequence is so.)

For general g, define Y; = / / (r,2) dr dz) = hm / / (rAop,z N(dr dz).. Then this

then define

and

is rcll local L?-martingale, i.e., Yia,, is rell L2- martlngale and satisfies the above properties.
For simplicity of the proof7 let m =1, and for T > 0, by restricting the time interval to [0,7], it is
enough to consider the following left-continuous step function f(r, z). Hence the first half is easy.

gn
z) = Z f(rgfl)l(r,’j,l,r,’; (r)lU(Z)
k=1

(rp =kT/2™, f(t) = f(w;t) is (F¢)-adapted and U € BY;v(U) < 00.)

Proposition 3.3 Let F be a linear sub-space of a space of all bounded measurable real-valued func-
tions f(t,z,w). If it satisfies the following two conditions, then it contains all bounded predictable func-
tions.

(1) F contains all bounded functions f(t,z,w) such that left-continuous in t > 0, and B™ ® F-
measurable in (z,w).
(2) fn€F;T f= f€EF
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(We give the proof at the end of this section.)

It is the same for g(r, z). We show the martingale property. It is enough to show

E [/:/Rg(r,z)ﬁ(dr,dz)

We divide (s, t] into 2" parts and denote the points as {r}}, and approximate g by step functions. In the
way, we restrict to Z, = {|z| > 1/n} and let U € Z,, = B™ N Z,. The above is easily obtained by the
following holds. Note that s <77 _; <rp <t

[/ / 9(ri—1)Lirp_, o1 (r) 1o (2) N (dr, dz) ‘]—“}

BB g0t )N ((rivr] x U) | Fouy ] | 7]

=F [g(rﬁ_l)E {N((Tk_l,rk] x U) } ‘]:s} =0 a.s.

.7:5} =0 a.s.

the last two equals comes from the following:
E[N((riy, i) < U) | Fouss] = B [N (070, i) < 0)] =0

Let gn(r, z) = g(r, 2)1|2|>1/» and by using L2-approximating, it is easy to show the above desired equation.

In fact, it holds that
t -
E {/ / gn (7, 2)N(dr,dz) ’]:s =0 a.s.
s R ]

and in order to show this for g, it is enough to show that for YA € F,

E {/:/Rg(r, 2)N(dr, dz);A: =0.

However, this is obtained by the following:

(5[ [ s aa] - [//gnm o] )
/ dr / — gn(r, 2))214]0(dz) — 0.

Moreover, the square moment is obtained by the following: For the step function, each terms are for
J<k,

gk DNy, 2] < U)g(rf_ )N ((rf—y, 77 x U),

and if j < k, i.e., j < k —1, then g(r?ﬁl)ﬁ((rg‘fl,r;?] x U)g(ry_,) is independent of N((rp_,,rp] x U),
and the expectation of the last is 0. If j = k, then

Elg(ry )N ((rj_y, 7] x U)*] = Elg(rp_)*|E[N((rp_y, 7] x U)?]
and
EIN((rj_y,r}] x U)?] = EN((rp_y,rp] x U) = (r} — rp_)v(U).

Hence, the desired equation is obtained by using L? approximation. |

[Proof of Proposition 3.3] For simplicity, we omit z € R™. (e.g. in F, we change B™ ® F; to
.Ft.)
D c 210°9)%2 js Dynkin family (d-system) PN
(i) [0,00) x Q € D.
(i) A, BeD;ACB= B\AecD.
(ii) A, e D1+ = |JA, €D.
For any C C 2[0:°)X2 there exists the smallest d-system d(C) containing C.
Then, the following holds.
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Lemma 3.1 If C C 2[0:°)%2 s closed under intersection of finite number of elements, then d(C) =

a(C).

The proof is easy (the next question).
We show Proposition 3.3 by using this. A bounded non-negative predictable function is approximated

by increasing sequence of non-negative predictable simple functions. Hence, it is enough to show YA €

P.14 € F. Thus, define A € P’ €% 14 € F, then this is a Dynkin family. For k < n, let (Y/F) be a

left continuous (]—'t) adapted process. Let C be the family of all (., {Y}¥ € By} (Bx € B'). Then, it
can be seen C C P’, and hence, d(C) C P’. By the above lemma, d(C) = ¢(C) = P, and we have P C P'.
On C C P, it is enough to show the case of n = 1, i.e., A; = {Y; € B} € P’. since ¢, is non-negative
continuous on R! such that 0 < ¢, 1 15, we have 14, = 15(Y;) = lim ¢, (Y;) € F. [ |

Question 3.1 Show the above lemma. The proof is a similar to the case of Monotone Class Theorem.

Since a o-additive class is a Dynkin family, d(C) C o(C) is clear. It is enough to show that d(C) is a
o-additive class. Moreover, it reduce to show that A, B € d(C) = AN B € d(C). For a fixed A € d(C), set

4 ={B C[0,00) x Q; AN B € d(C)}.

Then it can be easily seen that if A € d(C), then D4 is a Dynkin family. Hence, d(C) C D 4. This implies
the above result. In fact, if By, Bs € D; By C By, then AN (B2 \ B1) = (AN By)\ (AN DBy) € d(C). If
B, € Da;1, then AN (UBn) = U(AN B,) € d(C). Therefore, by the assumption ofC and the above
results, if A € C, then Dy D d(C), that is, if B € d(C), then B € Dy, i.e., AN B € d(C). and hence, by
exchanging A and B, we have if A € d(C), then D4 D d(C), [ ]
3.3 Ito formula (continuous type)

Let (X;) be an R%valued stochastic process defined by the following stochastic integrals;

Xi(w)=x+ /Ot a(r,w)dr + /Ot b(r,w)dB,(w).

if we denote the components, X; = (X}) = (X},..., X?), then
t
sz:vi—i—/ dr+/2b’ ydBE,
0 J<N

where B; = (Bf)kSN: an N-dimensional Brownian motion.

T
a(t) = a(t,w) = (a'(t,w))i<a: (Ft)-adapted; "T > O,/ la(t)|dt < oo a.s.
0

T
< b(t) = b(t,w) = (bi(t,w))iSd’kSN: (Fi)-adapted; YT > O,/ ||b(t)||2dt < o0 as., e, {b(t)}i>0 €
0
EO loc- Note that

()dBy = Y bp(t)dBf, [Ib()]* =Y (bh)* (D).

k<N ik

This is simply denoted as follows: (it is formal, however, it is convenient for calculus,)
Then, Ito formula is given as follows: for ¢(z) € C?(R%),

do(X,) = a(t) - Do(X;)dt + b(t) - Do(X,)dB, + %bg(t) -D%p(X,)dt.

where a(t) - D = a'(t)d;, b*(t) - D* = 3, bi(t )bl 9% (moreover, we sum on the same character of
superscripts and subscripts). 0; = 8/ Oz;, 812] = 32 / 8x18x e
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Letd=1,N =1.
1
do(X;) = ¢ (Xp)a(t)dt + ¢ (X;)b(t)d By + 590”(Xt)b(t)2dt.
If © has a Taylor’s expansion, then by using the following:
(dBy)? = dt, (dt)* = dtdB, = 0, i.e., (dX;)? = b(t)?dt and "n > 3, (dX;)" =0

formally, we can get the result as follows;
1
do(Xe) = ¢ (Xp)dX; + 5@"(Xt)(dXt)2

= X at)d + b(O)ABY + 50" (Xb(t)

Furthermore, if ¢(t, x) € C;’Q([O, o0) x R%), then we have (0, Xo) = ¢(0, z),
1
do(t, X;) = Orp(t, Xy )dt + a(t) - Do(t, X;)dt + b(t) - Do(t, X;)dB; + 5b2(t) - D2%p(t, X;)dL.

Proof. We only show the case of d = N = 1. It is enough to show the case a(r),b(r) are step
processes. If we consider an infinitesimal interval [s,t] which is contained in a small time interval of
a(r),b(r), then we may assume both are constants a(s),b(s) € F for the time r € [s,¢] and bounded
a.s. Here, we divide [s,t] into equal n parts, however, it is essential the same as s = 0, so we may let
ag, by € Fo and bounded a.s., and divide [0,¢] into equal n parts; ¢, = t} = tk/n,k =0,1,...,n. By
Taylor’s Theorem, we have

P(Xe,) = o(Xe,y) = &' (Xep ) (X, — X)) + %%’”(Yk)(th - Xu )%
where 70 = 0(w) € (0,1); Vi = X4, +0(Xs,, — Xt,_,)-
Xt — Xty = ao(ty —ti—1) + bo(By, — By,_,)-
Hence, it is enough to show the following:
X, — X4y, — a(t)dt + b(t)dB;
(Xt — X, 1) = (a(t)dt + b(t)dBy)* = b(t)?dt

as n — oo in the sense of a.s. or in L?. In order to it, we divide

n

5
P(X0) = p(Xo) = Y (0(Xu) = p(Xe, ) = DI

k=1

and assume ¢ € C? (i.e., ¢” is bounded). Then we can get the following as n — oco.

n t
D D C N T A e R L S
k=1 0
n t
2 o= S ¢(Xu o(By — B, ) = / o/ (X,)b(r)dB, in L,
0

~
Il
-

1t
¢" (Yi)bg (B, — By,_,)* = 5/ O (X, )b*(r)dr in L2,
0

~
w
Il
[~]=

N —

x>~
Il
—

~
Iy
Il
[]=
N | =

¢" (YVi)aobo(ty — tr—1)(Bi, — Bi,_,) — 0 a.s.,

£
Il
—

@I/(Yk)a(z)(tk - tk—l)z —0 a.s.

~
[
I

(]
N |

E
I
—
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Therefore, by taking a suitable sub-sequence, all convergence holds in the sense of a.s. Hence, we get the
desired result.

In fact, for I}, by the continuity of B,., max |B;, —B;, ,| — 0a.s. On I3 — 0, by ty—t_1 = 1/n — 0,
it is clear. We con51der on I} 12 I3. On I}, since ¢/(X,) is continuous in r, we have

n) n)in’

t t
Il — ao/ o' (X, )dr :/ o' (X )a(r)dr p.w.
0 0

t

On I2, by a step process f,(r) = Y ores (Xt )ty r 0] (1), IS = bo/ fnu(r)dB,, and since ¢ is
0

bounded and ¢’(X,) is continuous, we have || f.(r) — ©'(X;)1(0,q(r)||7 — 0. Thus,

t t t
2 :bo/ fa(r)dB, —>b0/ ¢ (X,)dB, :/ ¢ (X,)b(r)dB, in L2
0 0 0

On I3, let ¢ = ¢” € Cy(R), and it is enough to show
S G(Vi)(By, - By, ) %/w n L?.
k=1
By the continuities of X, and ¢, we have maxi<x<, E|t)(Yx) — (X, _,)[*> = 0 and by the boundedness
of 1 and by the following it is obvious.
2

n 2 n
E@}@mf%mﬁ4%4mm>ZEPM&NBmf—Wfﬁﬂpzzﬁo
k=1 k=1

At last, if ¢ € C?, then by letting o, = inf{t > 0;|X;| > n} and by considering X;,,,,, since ¢, "
are both bonded on {|z| < n}, Ito formula holds, and hence, by letting n — co, we have the result. ®

3.4 Ito formula 2 (jump type)
Let v(dz) be the Lévy measure on R™, i.e.,
v({0}) =0,"n > 1,v(|z| > 1/n) < oo

and let N(dt,dz) be the dtdv-Poisson random measure, i.e., the Poisson random measure on [O 00) X
R™ with the mean measure N(dt,dz) := E[N(dt,dz)] = dtz/(dz) Moreover, set N := N — N as the
compensated Poisson random measure.

Let f(t,2) = f(t,z,w), g(t,2) = g(t,z,w) be R-valued (F;)-predictable functions satisfying the
following integral conditions;

t
%>QL/”/ F(r2)w(dz) <o as.
0 |z|>1

t
Vi > 0,/ dr/ lg(r, 2)|?v(dz) < 00 a.s.
0 |z|<1

Let (X;) be the stochastic process starting at = defined as follows;
dXi(w) = a(t,w)dt + b(t,w)dB(w) + / ft, z,w)N(w;dt,dz) + / g(t, z,w)N(w; dt, dz),
|z|>1 |z]<1

where a,b are the same as in the previous section.
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Then Ito formula (jump-type) is given as the following: For ¢(z) € C?(RY),
dp(X)) = alt) De(X,)dt +b(t) - Do(X0)aBy + Sb2(1) - D (X, )

e(Xi— + [(t,2)) — o(Xe- )| N(dt, dz)

P(Xi— +g(t,2)) — (X2 )|N(dt, dz)

221

.
|z|<1

+/ \<1[“”(Xt— +9(t,2)) = p(Xi-) = g(t, 2) - D(X;)|v(dz)dt

v

+ [
[

Remark: In Ikeda-Watanabe [5], they assume fg = 0 and f, g are integrated on z € R.
If o(t,z) € Cp([0,00) x RY), then add the term d;p(t, X;)dt.

Especially, in the pure-jump type, i.e., a = 0,b = 0, we have

X, = /ZZlf(t,z)N(dt,dz)-i-/ g(t, z)N(dt,dz),

|z|<1

dip(Xy)

/ oK 1(,2) — (XN )
+ / o(Xee + glt, 2)) — o(Xe_)| N (dt, dz)
|z|<1
+ /| X g0t 2) ~00) —g(t2)- D (K ()

For simplicity of the proof, let d = m =1 and a = 0,b = 0. Moreover, it is enough to show the case
that coefficients satisfies the following.

/Ot dr /|Z|>1 E|f(r,2)|v(dz) < oo, /Ot dr /|z|<1 Elg(r, 2)[2v(dz) < .

First, if ¢ = 0, then X; is a pure jump process and ¢(X;) is changed by only jumps of f(r,z), and
hence,

PX) —p(Xo) = D (X)) —eX,) = D> (e(Xem + f(r,2)) = p(X,o))

r<t;AX,#0 r<t;AX,#0

/0 / ‘>1(<p(XT7 + f(r,2)) — o(X,—))N(dr,dz).

In case of g # 0, for simplicity, let f = 0, (however if f # 0, then it is enough to add the above term).
Let

dX] = / g(t, 2)N(dt,dz).
1/n<|z|<1

Then it is also expressed as

axy ::/ g(t, z)N(dt, dz) —/ g(t, z)dtv(dz)
1/n<|z|<1 1/n<|z|<1
We denote as X7 = d(XP)? +d(X)* = AXT +d(XP)° with AXP = X' — XP, ie, XP = X'+ AX].
IEN({(t,2)}) = 1, then AX}" = g({,2) and Ap(X]") = ¢(X7") = p(XiL) = @(Xi +9(L,2)) — 9(X7L).
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We set Z,, = {1/n < |z] < 1}.

PXE) = o) = [P XA+ S Aex)

rAXP£O

/ / (XM)g(r, 2)drv(dz) + / / 4 g(r2)) — (X IN(dt, d2)
~ / /Z n o' (X™)g(r, 2)drv(dz) + / /Z TP+l 2)) — (X" VN (dr, dz)

+/S /“ [p(X + g(r,2)) — (X2 )]drv(dz)
- / /Z [p(X™ +g(r,2)) — (X" )N (dr, dz)

+/s /Zn [QO(X:L— + g(r, Z)) — (p(X:_l_) — @l(Xf)g(r, Z)]dTV(dz)

Thus, if n — oo, then we can get the desired equation as a.s.-limits of a suitable subsequence. In fact,
since X" is a martingale, by using martingale inequality, we have sup,«r |X; — X}*| — 0 in L?. Hence,
for a suitable subsequence, it convereges a.s. The above 1st term convereges in [ and the 2nd term
convereges a.s. Therefore, by taking a sutable subesequence, both converge a.s. [ ]
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4  Stochastic Differential Equations

For simplicity, we consider the one-dimensional case; d = m = 1.

Let a(t,x),b(t,x), f(t,z, 2),g(t,z, 2); g(t,z,0) = 0 be Rl-valued functions of (time, state-space, jump-
parameter) (¢,z.z) € [0.7] x R! x R}

A stochastic differential equation is given by the following: the solution X; is a R'-valued stochastic
process such that Xg = x.

dXt = a(t,Xt)dt + b(t,Xt)dBt + /

2121

f(t, X,_, 2)N(dt,dz) + / g(t, Xy—, 2)N(dt,dz).

|z|<1

Xo = z is called an initial condition and a,b, f, g are called coeflicients (by adding the Lévy measure
v, a,b, f,g,v are also called coefficients).

Each of terms shows instantaneous hourly variation rate, and a is rate according to time, b is to a
Brownian motion, f is to large jumps and g is to small jumps (note that the number of large jumps in a
finite time interval is finite a.s.)

If a SDE without f,g, i.e, f = g = 0, then it is called a continuous type), otherwise it is called a
jump type. Moreover, if a = b = 0, then it is called pure jump type.

The SDE is actually defined by stochastic integrals.

¢ ¢ ¢
Xi==x —|—/ a(s, Xs)ds —|—/ b(s, Xs)dBs —|—/ / f(s,Xs—,2)N(ds,dz)
0 0 0 JIz|>1

¢
—|—/ / 9(s, Xs—,z)N(ds,dz).
0 J|z|<1

4.1 Continuous-type SDE

Let d > 1, N > 1. Let By = (B});<n be an N-dimensional Brownian motion; By = 0.
Let a,b be Borel functions of (t,x) € [0,T] x R? such that a = a(t,z) = (a’(t,2))i<a is d-dimensional
vector valued, and b = b(t,z) = (bi.(t,x))i<a,k<n is d x N-matrix valued. Set Xy =z € R%.

dXt = a(t, Xt)dt + b(t, Xt)dBt

Each components is
N
dX] =a'(t, Xo)dt + ) _bj(t, X,)dBf, 1<i<d.
k=1

a is called a drift coefficient and b is called a diffusion coefficient. The integral form is

¢ ¢
X == —|—/ a(r, X,.)dr +/ b(r, X, )dB,.
0 0

Each components is
X, =z —|—/ a'(r, X, )dr + Z/ bi(r, X, )dB¥, 1<i<d.
0 170

Set af? = (a')® + -+ + (a?)? and [|b]* = 32, <4 ren (bh)*-

Theorem 4.1 For the continuous type SDE, if coefficients are linear increasing and Lipschitz con-
tinuous, i.e., "T > 0,7 K = Ky > 0;"t € [0,T],» € RY,

la(t, @)+ [[b(t, 2) | < K(L+[z]),  |a(t, ) — a(t,y)| + [|b(t, ) = b(t,y)[| < K|z —y],

then the solution (X;)i>o ewists uniquely and it is continuous such that (X;) € L%, ie., T >
0, [} E|X;|2dt < oo.
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The uniqueness means if (Z) is also a solution, then it is strong equivalent to (X3), i.e., P(X; =
X, "t >0)=1.

Proof. We use Picard iteration. The approximating sequence X" = (X{*) is defined as follows: Let
X} =z and if X" is defined, then set

dXP = a(t, X7)dt +b(t, X")dB;, X§t' =

It also holds that X" = (X[*) i& (F:)-adapted and
E [sup|Xf|2} < 00.
t<T

From these, X"*! is well-defined and the following holds ¥7' > 0,n > 1,

(CIT)nfl
(n—1)!"

Therefore in L2(Q — C([0,T])) under the norm || X||* := ||| X |||z = (E[sup,<r | X¢|?])'/2, the infinite
series >° o, [ X" — X"||* converges. Hence {X"} is a Cauchy seq. and by completeness of L?(Q —
C([0,T7])) under || - ||*, there exists a limit X = (X;);<r a.s. That is, {X™} converges to X uniformly a.s.
and it also converges undcr Il - [|7. Hence, it is a solution of the SDE.

At last, for the uniqueness, if X, X are the solutions and let 7, = inf{t > 0;|X;| V| X,;| > L}, then by
the same way as above we have

E [sup Xt~ X?F} <Gy
t<T

t
Bl Xipn, — Xonn, |2 < Cy / ElXonr, — Xopr, P2r.
0

Hence, by the Gronwall’s inequality (see the next proposition), we get
E|Xt/\TL _)’Et/\n‘2 =0, 0Z5t<T

and by the continuities of X,)?, we have P("t < T, Xip,, = )?MTL) =1 and 77, — oo a.s. Thus, this
implies the string equivalence. n

Proposition 4.1 (Gronwall’s inequality) For a continuous function g(t) on [0,T],
t

3C1,C > 0;0< g(t) <Oy + C’g/ g(r)dr = g(t) < Cre®??
0

Proof. If we set h(t) = e_C2tf Cag(r)dr, then the assumption implies h'(t) < C1C2e~ 2t By
integrating on [0,¢] and h(0) = 0, we have h( ) < O1(1 — e~ %2Y). Again, by the assumption, the desired
inequality is obtained. u

4.2  Jump-type SDE

The jump-type is an adding jump terms to a continuous-type. The coefficients f, g of jump terms are
Borel functions of (t,7,2) € [0,00) x R x R™ and f = f(t,2,2) = (f'(t,2,2))i<a; f = 0 on |2| < 1,
g=g(t,z,2) = (g'(t,x, 2))i<a; g(t,,0) =0 5D g =0 on |z| > 1. The jump-type SDE is

dXt = (l(t,Xt)dt + b(t,Xt)dBt + /
[z]21

f(t7Xt—7Z)N(dt’dZ)+/ g(t7Xt—aZ)N(dtadZ)7
lz1<1

where u(dz) is a measure on R™ such that "n > 1,v(|z| > 1/n) < co. N(dt,dz) is a dtv(dz)-Poisson
r.m., N(dt,dz) = dtv(dz) and N = N — N. Let assume the following on f:

¢
Yt >0,z € RY, / dr/ |f(r,z, 2)|v(dz) < oo
0 |z[>1
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Theorem 4.2 For the jump-type SDE, by adding the following conditions to the continuous-type:
YT >0,°K = Kr > 0;t € [0,T),z € R4,

/| ot ) < K(t ),

and
/| 0,2, 2) —gft 9, P(dE) < K~y
z|<1

the solution (X¢)>o exists uniquely and it is first kind of discontinuous process. Moreover, if f =0, then

(X;) € L2 holds.

Proof. It can be shown by a similar way to the continuous-type. However, in order to treat large
jumps, let (7%, &x); 0 < 7% 11 00 be a family of all jump masses, i.e., sets of jump times and jumps. (It is
possible because for any 7' > 0, N([0,T] x {|z| > 1}) < o0 a.s.)

First if f = 0, then the existence of the solution Y;' can be the same way as in case of the continuous-
type. Thus, let X} = Y;! for t € [0,71), and X} = Y} + f(r,Y(n1—),&) if t = 7). Next, let Y2
be the solution for ¢ € [0,7p — 71] starting at Y = XJ corresponding to B/* := By, — B, and
N7 (dt,dz) := N(dt + 71,dz), determined by the same way as Y;' (note that we have to change the
time variable r to r + 71). Let X? = X} if t € [0.mq] and X? = Y2 _ if ¢ € [, 7], then this is a
solution for ¢ € [0,7]. Here, more precisely, the definition of Y;? is that we first change 7; to non-
random time s and consider the starting point as Yz € R¢, and for the solution Y? = Y (w;x,s), set
s=m1(w),z = Xil(w)(w).

By continuing this operation the solution X; is defined as X; = X} for ¢t € [0,74], and this is the
unique solution. [ |

[Adding] The proof of that X} is a solution for ¢ € [0, 7], especially for ¢ € (11, T2].
Let s =7 and if ¢ € [0, 72 — s), then

¢ ¢ ¢
Y- X! = / a(r—i—s,Yf)dr—}—/ b(r+s,Y?)dB: —|—/ / g(r+s,Y,2  2)N*(dr,dz)
0 0 0 Jizl<1

t+s t+s t+s .
[ vz oas [ ez oas s [ gz, 2N @)
s s s |z|<1
where we use for a fixed s > 0, (B = B,4s — B;s) = (B;) and

t t t+s
/ b(r+s,Y,?)dB? :/ b(r+5,Y?)d(B,,s — Bs) :/ b(r,Y,? )dB,.
0 0 s

Therefore, for t € [s,72), X? = Y2, is the same as above Y,?, and it is a solution to the original equation.
Of course,

X72-2 = YTQZ—S + f(7-27Yv(7'g—s)—7§2)'
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5 Transition Probabilities and Generators
Let (X¢, P,) be a time-homogeneous Markov process on R? starting from 2. For a bounded Borel function
p, set

Pia.dy) i= Po(Xi € dy). Pp(o) 1= Brle(X0] = [ o) (a.d).

P,(z,dy) is called a transition probability. (P;);>¢ is a transition semi-group on a family of bounded
continuous functions C, = Cy(RY), i.e.,

Py=1,P,P, =Py (s,t >0)

Moreover, if (X;) is a Markov process with sample paths in D = D(R?), then lim, o Pip(z) = ¢(x), i.e.,
limy)o P, — I on Cj. Furthermore, it is right-continuous: Py, — P; (h ] 0) on G for "¢ > 0.

On the other hand, if (P;) is right-continuous on C}, then (X;) is right-continuous in probability, i.e.,
Ve >0, P(|X¢1n — X¢| <€) = 1 (h ] 0) for ¥t > 0. In fact, if p € C}, satisfies ¢(0) = 0 and ¢(x) = 1 for
|z| > &, then

P([Xeyn — Xi| > €) < Elp(Xipn — Xo)] = E[/ ¢y — ) Pu(z, dy)| 2=x,] = Elp(0)] = 0.

5.1 Generators

Let (P;) be a right-continuous semi-group on Cp.
A generator L on D(L) C Cj is defined as

.1 . 1

where ¢ € D(L) is a family of all ¢ € C} such that the above limit exists.

In this case. we get P, = e** formally.

Moreover, if the transition probabilities depend on the time as P, (z,dy) = P(X; € dy| Xs = z)
for 0 < s < t, then Py = I, P;,P,,, = Ps,. We also assume the right-continuity of P;;); i.e.,
Poy+ = P4, Psyi = Ps;. In this case, the generator also depends the time and it is defined by L; =
limp,o(Pre+n — I)/h on D(L,). Formally, it is given as P, ; = cxp[fst L,dr].

we consider the following function spaces:
def

cpeC=C3RY) & 38%90 € Cyp (1,5 < d), where ij = 0?/0z;0x;.
peCx PLiN p € C°°, supp ¢ is compact.

Theorem 5.1 Let (X;) be the solution of the following jump type SDE starting from Xo = x, where,
coefficients (a,b, f,g) satsfy the same condition as in Theorem 4.2.

dXt = &(t, Xt)dt + b(t, Xt)dBt + /

|z|=1

f(t, X, 2)N(dt, dz). + / g(t, Xy_, 2)N(dt,dz).

|z|<1

Then, the generator is given as follows: for ¢ € CZ,
, 1L
Lip(z) = a'(t,2)0ip(z) + B} Zb;cb?c(tax)afjéo(x)
k=1
+ [ e+ 5ta) —ptviae)

n / oz + gt . 2)) — (z) — Bupla)g (t, 2, 2)](d),
|z|<1

where we sum on the same characters of superscripts and subscripts, e.g. a'x; = Zigd a'x;.
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Proof. For simplicity, let d = 1. By applying Ito formula to ¢(X¢ip),

t+h t+h
P =X = [ A+ [ KA

t+h
+/t /221 [o( X + f(5, Xo—, 2)) — p(X_)] N(ds, dz)
t+h B
+/t /Z<1 [(o(Xs— 4+ 9(s,Xs—,2)) — o(Xs—)] N(ds, dz).
t+h
+/t /z<1 [p(Xom + g(s, X 2)) = p(Xon) = ¢'(Xs-)g(s, X, 2)] dsv(dz),

where d(X,)¢ = a(s,X;)ds + b(s, Xs)dBs, d(X?)* = (dB,)* = ds. Noting that Pppinp(z) =
Elp(Xiyn)| X = ], that is,

Prirnp(x) — p(x) = Elp(Xegn) — o(Xe)| Xi = 2],
since the expectations of stochastic integrals by dB, and dN are 0, we get the desired result. [ ]

The simplest example is for a Brownian motion. Let X; = x 4+ B;. This is time-homogeneous and
Li=L=A,./2

If all coefficients does not depend on time and space, then the solution is a time-space inhomogeneous
Markov process, and this is a Lévy process. Especially, if f = g = z (m = d), then v satisfies that

V({0}) = 0, /Rda A J22)w(dz) < oo,

The generator is given as

1
Le=a-Dp+ §b2 -D%p + /Rd [p(- +2) —0() = 2- Dp()1)z<1]v(dz),
where a- D = a'0;, b - D* =3, b;ﬂbiai?j.

The characteristic function is given as

. 1 ;
Ele€X] = Y@ W(¢) =ia- ¢ — §b2 €2 _|_/ [ezzf —1—iz- &l v(d2),
where ¢ € R4, b? - €2 = Dok bzbififj-

5.2 Martingale problems

The solution of the previous SDE is called a string solution.

On the other hand, for the given coefficients (a,b, f, g,v), if there exist an appropriate probability
space and the solution of SDE on it, then it called a weak solution.

In general, for a given operator L., it is difficult that whether if the corresponding transition semi-
group P ; exists.

Let L; be the same as in (5.1) and denote the domain as D(L;). (we sometime use this as [,, D(L¢)
if necessary.)

On Q = D([0,0)), set F = o(C); C is a family of all cylinder sets, i.e.,

CeC &L C={(wt),...,w(tn)) €Ay X - X Ay, (0<ty <--- <tn, Ay, € B0 > 1),

Also let F} be the o-additive class generated by a family of all cylinder sets until the time ¢ > 0. and
set Fy := oo Fiye-
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For any fixed x € R, if exists a probability measure P = P, on (£, F, (F;)) such that for X;(w) =
w(t), it satisfies the following, then {P,}, is called a solution of a martingale problem: with an
appropriate function space Dy (e.g., C°, CZ, etc),

(1) P(Xo) ==

t
(2) ¥ € Do, M(p) i= ¢l(X) = (@) ~ | Leg(X)dr is (Fi)-mantingale.
0
Of course, this solution is a Markov process with the generator L;.

Clearly, a weal solution is a solution of the martingale problem. The inverse is also ture, and hence,
these are equivalent. In this case Dy C D(Ly) is called a core of (L;).

Let P, be a solution of the martingale problem. For 0 < s < ¢, by Ps 10(y) = E.[o(Xy)| Xs =y] ,

Puvio(y) — o(y) = Epp(Xs) — 9(X)| Xy = 4] = / B, [Lp(X,)]| X, = yldr = / Puy Loo(y)dr.

This implies the generator is L.
Moreover, if we differentiate in ¢, then

0Py vip(2) = PyyLupla) = / Lep(y) Pt (x, dy).

For simplicity, let d = 1 and we consider the time-homogeneous case. Let Pi(z,dy) = pi(z,y)dy and
Oyp, 8yp, dip are bounded in y. Furthermore, if L is a continuous type (f = g = 0), and if a,b is in C?,
then for ¢ € C2, we have (by integration-by- parts)

/ o) Orpr(,y)dy = / ()L pa(, ) dy.

That is, O¢pt(z,y) = L*pi(x,y) a.e. holds, where L* is an adjoint operator of L and it given as

L*p(y) = —0; (a'(y)p(y)) + 82 Z bi bJ

k<N

If we don’t fix a starting point of X, that is, if we let X be a random variable, then for u(t,y) =
E[p:(Xo,y)], under the same conditions, dyu = L*u a.e. holds. [F]UGIHETE»N 3.)
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