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1 Definitions of Stochastic Processes (Xn, P ), (Xt, P )

On a probability space (Ω,F , P ), a stochastic process is a family of random variables (RVs) (Xn =
Xn(ω)) or (Xt = Xt(ω)) (ω ∈ Ω) with time index n ∈ N or Z+, i.e., n = 1, 2, . . . or n = 0, 1, 2, . . . , or
t ∈ [0,∞). (it is called discrete-time or continuous-time),

A probability space (Ω,F , P ) is that Ω ̸= ∅ is a non-empty set (a total set or a total event),
F ⊂ 2Ω is a σ-additive class, an element A ∈ F is called an event, P = P (dω) is a probability
measure. (where 2Ω is a family of all subsets of Ω.)

(Xn) = {Xn} = {Xn}n≥0 is called a discrete-time stoch. proc.
(Xt) = {Xt} = {Xt}t≥0 is called a continuous-time –.
When a filtration (Fn), i.e., a family of increasing sub σ-add. classes of F ; F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F

is given, for each time points n, if Xn is Fn-measurable, then (Xn) is called an (Fn)-adapted stoch.
proc. In the following, we always assume this condition is satisfied. If the time index n is changed to t,
then it is a similar.

In this text, we first discuss on discrete-time processes, and at the end on continuous-time processes.

2 Discrete-time Markov Chains

In discrete-time stochastic processes we first investigate “Markov chains”.

2.1 Basic examples

A Markov chain is a stochastic process such that the future action depends only on the present state and
it is independent of the past actions

We give two examples.
The first one is called a random walk (RW) which has independent identically distributed incre-

ments, i.e., X0, X1 − X0, X2 − X1, . . . are independent and Xn+1 − Xn
(d)
= X1 − X0 (n ≥ 1). It is the

simplest model and well investigated.

Example 2.1 Let 0 < p < 1 and q := 1 − p. (Xn, P ) is a random walk on Z starting from 0 if
X0 = 0 and for every j ∈ Z,

P (Xn+1 = j + 1| Xn = j) = p, P (Xn+1 = j − 1| Xn = j) = q := 1− p.

Remark 2.1 If we denote a conditional probability P (A| B) := P (A ∩ B)/P (B), then we always
assume P (B) > 0.

Question Show that A,B ∈ F are indep. ⇐⇒ P (A| B) = P (A).

The second one is a Gorton-Watson (GW) process which is a population model of generational
change with respect to a family tree. Bienaymé, Galton, Watson noticed that many family trees go
frequently lost and they calculated a survival probability of a family tree.

Example 2.2 Galton-Watson process or Bienaymé-Galton-Watson process (Zn, P ) is a
number of males in each generations such that each males has Y -number of males, where Y satisfies
P (Y = k) = pk for k = 0, 1, 2, . . . ((pk) is a distribution; pk ≥ 0,

∑
pk = 1). Let Zn be a number of males

of the n-th generation. Let the starting point be one ancestor; Z0 = 1. Then each born males remains
boys independently according to the same probability of Y .

In this model, we can show that it depends on a mean of number of descendants m =
∑
kpk that the

survival probability of a family tree is positive or not.
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2.2 Time-homogeneous Markov chain

In this subsection, we show the following result:

Theorem 2.1 Let S be a countable set. An S-valued irreducible time-homogeneous Markov chain
is recurrent or transient.

Now in general, so many people say “Mathematics is difficult, because sentences are unintelligible.”
The above sentence may be just so. The cause is simple that many people does not understand

definitions of mathematical terms.

“irreducible”, “time-homogeneous”, “Markov chain”, “recurrent”, “transient”

A Markov chain is a process such that future actions depend only on a present state and it is inde-
pendent of past actions, however, roughly speaking, it may be called a hit-or-miss process or a stopgap
process.

The exact definition is the following:

Let S be a countable set. An S-valued stochastic process (Xn, P ) = (Xn(ω), P (dω)) (n = 0, 1, 2, . . . )
is called a Markov Chain if it satisfies the following:

(M1) [Markov property] For n ≥ 1, j0, j1, . . . , jn, k ∈ S,

P (Xn+1 = k| X0 = j0, X1 = j1, . . . , Xn = jn) = P (Xn+1 = k| Xn = jn).

Moreover, it is called a time-homogeneous Markov chain if it also satisfies that

(M2) [Time homogeneity] For n ≥ 1, j, k ∈ S,

P (Xn+1 = k| Xn = j) = P (X1 = k| X0 = j) (=: q(j, k)).

In this text, we don’t treat time-inhomogeneous type, so in the following we always say a Markov
process as a time-homogeneous Markov chain.

The distribution of X0; µ = {µj}; µj = P (X0 = j) is called an initial distribution, and especially,
if for some j ∈ S, P (X0 = j) = 1, then we denote P as Pj and (Xn, Pj) is called a Markov chain starting
from j. (This is equivalent to that when P (X0 = j) > 0, Pj is defined as Pj(·) := P (·| X0 = j). It is
convenient in calculations.)

For n ≥ 0, j, k ∈ S, let qn(j, k) = P (Xn = k| X0 = j) and Qn = (qn(j, k)) is called an n-step
transition probability (matrix), In particular, denote Q1 as Q = (q(j, k)) and it is simply called a
transition probability (matrix).

Question 2.1 Show the following:
(i) qn(j, k) ≥ 0,

∑
k qn(j, k) = 1 (j ∈ S).

(ii) For n ≥ 1, j0, j1, . . . , jn ∈ S,

P (X0 = j0, X1 = j1, . . . , Xn = jn) = µj0q(j0, j1) · · · q(jn−1, jn).

(iii) For m,n ≥ 1, j0, j1, . . . , jm+n ∈ S,

P (Xn+1 = jn+1, . . . , Xn+m = jn+m| X0 = j0, X1 = j1, . . . , Xn = jn)

= q(jn, jn+1)q(jn+1, jn+2) · · · q(jn+m−1, jn+m).

(iv) Q0 = I := (δjk) (unit matrix), Qn = Qn (n ≥ 1), where δjk = 1 (j = k), = 0 (j ̸= k).

Question 2.2 Show that if µ = {µj} is an initial distribution of a Markov chain (Xn), then

P (Xn = k) =
∑
j∈S

µjqn(j, k).
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We defined a recurrence time Tj to j ∈ S as

Tj = inf{n ≥ 1;Xn = j} (= ∞ if {·} = ∅).

We also define

• j is recurrent
def⇐⇒ Pj(Tj <∞) = 1,

• j is transient=non-recurrent
def⇐⇒ Pj(Tj <∞) < 1

If all j are recurrent (or transient), then (Xn) is called recurrent (or transient).

A Markov chain {Xn} or a transition probability Q = (q(j, k)) is irreducible if for arbitrary j, k,
j → k, i.e., ∃n ≥ 1; qn(j, k) > 0. This means it is possible to go to anywhere if it starts from anywhere.
(In other word, there is no point that is a trap or transient or it can not go.)

The following is a main result for a time-homogeneous Markov chain in this section.

Theorem 2.2 　 Let j, k ∈ S.
(i) The condition that j is recurrent is equivalent to the following:

a)

∞∑
n=0

qn(j, j) = ∞. b) Pj({Xn} is returns to j infinitely many times ) = 1.

(ii) The condition that j is transient is equivalent to the following:

a)

∞∑
n=0

qn(j, j) <∞. b) Pj({Xn} is returns to j infinitely many times ) = 0.

(iii) If {Xn} is an irreducible Markov chain, then it is recurrent or transient.

We first show b) of (i), (ii) and a), and (iii).
Question O-1 Show that for m,n ≥ 1, j0, j1, . . . , jn+m ∈ S,

P (Xn+1 = jn+1, . . . , Xn+m = jn+m| X0 = j0, X1 = j1, . . . , Xn = jn)

= P (Xn+1 = jn+1, . . . , Xn+m = jn+m| Xn = jn).

Question O-2 Let {Bk}nk=1 be disjoint events and for a event A,C it satisfies that P (A| Bk) =
P (A| C) (1 ≤ k ≤ n). Then show P (A|

⋃
Bk) = P (A| C).

Proposition 2.1 (i) If j ∈ S is recurrent, then Pj({Xn} is returns to j infinitely many times ) = 1.
(ii) If j ∈ S is transient, then Pj({Xn} is returns to j infinitely many times ) = 0.

Proof. Let T
(m)
j be the m-th return time to j;

T
(1)
j = Tj , T

(m)
j = min{n > T

(m−1)
j ;Xn = j} (= ∞ if {·} = ∅).

We first show Pj(T
(m)
j < ∞) = Pj(Tj < ∞)m. For positive integers s, t, by time-homogeneous Markov

property we can show

Pj(T
(m)
j = s+ t| T (m−1)

j = s) = Pj(Tj = t).

(In fact, [RHS]= P (Xs+t = j,Xs+u ̸= j (1 ≤ u ≤ t − 1)| T (m−1)
j = s) and by using {Xu ̸= j} =⋃

ku∈S;ku ̸=j{Xu = ku} and noting that {T (m−1)
j = s} is determined by the state of {X1, . . . , Xs(= j)},

and by using the above questions O-1, O-2, we can get it.) Moreover, by P (A ∩ B) = P (B| A)P (A) we
have

Pj(T
(m−1)
j = s, T

(m)
j = s+ t) = Pj(T

(m−1)
j = s)Pj(Tj = t).
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Hence, by

Pj(T
(m)
j <∞) = Pj(T

(m−1)
j < T

(m)
j <∞)

=

∞∑
s=m−1

∞∑
t=1

Pj(T
(m−1)
j = s, T

(m)
j = s+ t)

= Pj(T
(m−1)
j <∞)Pj(Tj <∞)

we have Pj(T
(m)
j <∞) = Pj(Tj <∞)m. Therefore,

Pj({Xn} returns to j infinitely many times) = Pj(
⋂
m

{T (m)
j <∞})

= lim
m→∞

Pj(T
(m)
j <∞)

= lim
m→∞

Pj(Tj <∞)m.

This is 1 if Pj(Tj <∞) = 1, or 0 if otherwise.
We define some notations: For j, k ∈ S, let fm(j, k) := Pj(Tk = m) (m ≥ 1) and

Qjk(s) :=

∞∑
n=0

qn(j, k)s
n (|s| < 1), Fjk(s) :=

∞∑
m=1

fm(j, k)sm (|s| ≤ 1).

Each is called a generating function of {qn(j, k)}n≥0 or {fm(j, k)}m≥1, respectively. Note that

lim
s↑1

Qjk(s) =

∞∑
n=0

qn(j, k) and Fjk(1) = Pj(Tk <∞).

Lemma 2.1 For j, k ∈ S, the following hold:

qn(j, k) =

n∑
m=1

fm(j, k)qn−m(k, k) (n ≥ 1), Qjk(s) = δjk + Fjk(s)Qkk(s) (|s| < 1).

Proof. Noting that {Tk = m} = {Xm = k,Xs ̸= k (1 ≤ s ≤ m− 1)}, we have

qn(j, k) = Pj(Xn = k) =
n∑

m=1

Pj(Xn = k, Tk = m)

=

n∑
m=1

Pj(Tk = m)Pj(Xn = k| Tk = m)

=

n∑
m=1

Pj(Tk = m)Pj(Xn = k| Xm = k)

=

n∑
m=1

fm(j, k)qn−m(k, k).

Moreover, by this (also by change of sums

∞∑
n=1

n∑
m=1

=

∞∑
m=1

∞∑
n=m

) we have

Qjk(s) = δjk +

∞∑
n=1

qn(j, k)s
n = δjk +

∞∑
n=1

n∑
m=1

fm(j, k)qn−m(k, k)sn = δjk + Fjk(s)Qkk(s).

Proposition 2.2 j ∈ S is recurrent ⇐⇒
∞∑

n=0

qn(j, j) = ∞.
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Proof. By the above lemma, Qjj(s)(1− Fjj(s)) = 1 (|s| < 1). Hence, by Fjj(1) = Pj(Tj <∞) and

lim
s↑1

Qjj(s) =

∞∑
n=0

qn(j, j) ≤ ∞,

and by letting s ↑ 1 it is obtained. (In formal, it can be expressed as

∞∑
n=0

qn(j, j)(1− Pj(Tj <∞)) = 1.

Thus, if Pj(Tj <∞) = 1, then

∞∑
n=0

qn(j, j) = ∞. If Pj(Tj <∞) < 1, then

∞∑
n=0

qn(j, j) <∞.)

Question 2.3 By a similar way to the above proof and considering the case of j ̸= k, show

j ∈ S is transient ⇒
∞∑

n=0

qn(k, j) <∞ (∀k ∈ S)

(Then, the contraposition also holds: [∃k ∈ S;

∞∑
n=0

qn(k, j) = ∞ ⇒ j :] is recurrent.)

(Use
∑

n qn(k, j) = Fkj(1)
∑

n qn(j, j).)

For j, k ∈ S, we denote j ↔ k if j → k and k → j.

Proposition 2.3 For j, k ∈ S; j ↔ k, If j is recurrent or transient, then k is so, respectively.
Therefore, an irreducible Markov chain is recurrent or transient.

Proof. By j ↔ k, ∃ℓ,m ≥ 1; qℓ(j, k) > 0, qm(k, j) > 0. Moreover, by

qℓ+m+n(j, j) ≥ qℓ(j, k)qn(k, k)qm(k, j) (n ≥ 0),

we have

Qjj(s) =

∞∑
n=0

qn(j, j)s
n ≥

∞∑
n=0

qℓ+m+n(j, j)s
ℓ+m+n ≥ sℓ+mqℓ(j, k)qm(k, j)Qkk(s).

Hence, if j is transient, then

lim
s↑1

Qjj(s) =

∞∑
n=0

qn(j, j) <∞

and by the above inequality, we have

∞∑
n=0

qn(k, k) <∞, and hence, k is also transient. It is the same if

we exchange j, k.
By the above result, we finish the proof of Theorem 2.2.

Moreover, in the following, we can see the more general relations of transition probabilities, transience and
reccurence. (However, the result is not used in the next subsection. So readers may not read the following.)

Lemma 2.2 If j is recurrent and j → k, i.e., ∃n ≥ 1; qn(j, k) > 0, then Pk(Tj < ∞) = 1.

Proof. For arbitrary i, j ∈ S, it holds that

Pi(Tj < ∞) = q(i, j) +
∑

k∈S;k ̸=j

q(i, k)Pk(Tj < ∞).
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(In fact, by time-homogeneous Markov property [and also by Pi(A| B) = P (A| B ∩ {X0 = i}) (→ check this)],
we have Pi(Tj = n| X1 = k) = P (Tj = n| X0 = i,X1 = k) = P (Tj = n| X1 = k) = Pk(Tj = n − 1). Hence,
Pi(X1 = k, Tj = n) = q(i, k)Pk(Tj = n− 1) and

Pi(Tj < ∞) =

∞∑
n=1

∑
k∈S

Pi(X1 = k, Tj = n) = Pi(X1 = j) +

∞∑
n=2

∑
k ̸=j

Pi(X1 = k, Tj = n).

These imply the above equation.) Now note that by the assumption of qn(j, k) > 0, we have ∃(k1, . . . , kn−1);
q(j, k1)q(k1, k2)q(k2, k3) · · · q(kn−1, k) > 0. Hence, if we let i = j in the above equation, then by the recurrence
of j, i.e., Pj(Tj < ∞) = 1, we can get for ∀k ̸= j; q(j, k) > 0, Pk(Tj < ∞) = 1. Of course, if k = j, then
Pj(Tj < ∞) = 1. Therefore, let k = k1, and again in the above equation let i = k1. If k = k2, then by
q(k1, k2) > 0, we have Pk2(Tj < ∞) = 1. By continuing this operation, the desired result is obtained.

Question 2.4 Show the following by the hint of Question 2.3 and by the above lemma:

j is recurrent and j → k ⇒
∞∑

n=0

qn(k, j) = ∞.

Theorem 2.3 By the previous Question 2.3, 2.4 for an irreducible Markov chain,

• if it recurrent, then for ∀j, k ∈ S,
∑

n qn(j, k) = ∞.

• if it transient, then for ∀j, k ∈ S,
∑

n qn(j, k) < ∞.

Conversely, for some j, k ∈ S, if
∑

n qn(j, k) = ∞, then it is recurrent, or if
∑

n qn(j, k) < ∞, then it is transient.

2.3 d-dimensional random walks

Let S = Zd (∋ j = (j1, . . . , jd)) be a d-dimensional lattice.
{pj}j∈Zd is a distribution on Zd if pj ≥ 0,

∑
pj = 1.

Definition 2.1 (Xn, P ) is a d-dimensional random walk (d-dim. RW) if {X0, X1 −X0, X2 −
X1, . . . } are independent and P (Xn −Xn−1 = j) = pj (n ≥ 1, j ∈ Zd), where {pj}j∈Zd is a distribution
on Zd. (It is also called a RW with a one-step dist., {pj}). Especially, if pj = 1/(2d) for all j ∈ Zd;

|j| = 1, then it is called a simple random walk, where j = (j1, . . . , jd), |j| =
√
j21 + · · ·+ j2d.

Moreover, define Pj by Pj(X1 = k1, . . . , Xn = kn) := P (X1 = k1, . . . , Xn = kn| X0 = j), then
(Xn, Pj) is called a d-dim. RW starting from j.

Clearly, a d-dim. RW is a Markov chain. Its transition probability Q = (q(j, k)) is given as q(j, k) =
pk−j . Moreover, a d-dim. simple RW is irreducible.

Question 2.5 Check the above results: [time-homogeneous Markov property, transition probability, ir-
reducibility]

Question 2.5 Revision Let (Xn, P ) be d-dim. RW.

(1) Show Xn+1 −Xn and (X0, X1, . . . , Xn) are indep., i.e.,

P (Xn+1 −Xn = k,X0 = j0, X1 = j1, . . . , Xn = jn)

= P (Xn+1 −Xn = k)P (X0 = j0, X1 = j1, . . . , Xn = jn).

Especially, by summing on j0, j1, . . . , jn−1 ∈ Zd, it can be seen that Xn+1 −Xn and Xn are indep.

(2) Show P (Xn+1 = k| X0 = j0, X1 = j1, . . . , Xn = jn) = P (Xn+1 = k| Xn = jn) = pk−jn .
This implies {Xn} is a time-homogeneous Markov chain such that q(j, k) = pk−j .

(3) Show that a simple RW is irreducible. (By using ∥j − k∥ := |j1 − k1| + · · · + |jd − kd|, divide the
cases j ̸= k, j = k.)
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Now we can discuss on recurrence and transience by using transition probabilities Q = (q(j, k)) =
(pk−j).

By using the results in the previous section, it is relatively easy to see that the following for a simple
RW:

Theorem 2.4 A d-dimensional simple RW is

(1) recurrent (i.e., Pj(Tj <∞) = 1) if d = 1, 2.

(2) transient if d ≥ 3.

In this text we show the case of d ≤ 3.
By the irreducibility it is recurrent or transient. It is enough to check the convergence or divergence

of the sum of qn(0, 0).
Since it is not return to starting point by odd steps, we have q2n+1(0, 0) = 0, and hence, it is enough to

consider on q2n(0, 0). We can show the following: (By this result the recurrence or transience is obtained
by Theorem 2.2 in the previous section.)

Proposition 2.4 Let Q = (q(j, k)) be a transition probability of a d-dim. simple RW.

(1) If d = 1, 2, then as n→ ∞,

q2n(0, 0) ∼
{

1/
√
πn (d = 1)

1/(πn) (d = 2)

where an ∼ bn (n→ ∞)
def⇐⇒ an/bn → 1 (n→ ∞).

(2) If d = 3, then ∃C > 0;
q2n(0, 0) ≤ Cn−3/2.

Question 2.6 Show that for positive numerical sequences {an}, {bn}, if an ∼ bn (n → ∞), then
∃c1, c2 > 0; c1bn ≤ an ≤ c2bn (∀n ≥ 1) holds.

Remark 2.2 It is known that (the constant is
√
(3/π)3/4 if d = 3)

q2n(0, 0) ∼ 21−ddd/2(πn)−d/2 (n→ ∞).

We give an important formula:

[Stirling’s formula] n! ∼
√
2πnn+1/2e−n (n→ ∞).

[Proof of Proposition 2.4]
If d = 1, then the following is easily obtained

q2n(0, 0) =

(
2n

n

)
2−2n ∼ 1√

πn
(n→ ∞).

Hence, the desired result follows by Stirling’s formula.

If d = 2, then

q2n(0, 0) =
∑

j,k≥0;j+k=n

(2n)!

(j!k!)2
4−2n =

(
2n

n

) n∑
j=0

(
n

k

)2

4−2n

and by using

n∑
j=0

(
n

k

)2

=

(
2n

n

)
, we have the result by the one-dimensional result.



Basics of Stoch. Processes (S. Hiraba) 8

If d = 3, then

q2n(0, 0) =
∑

j,k,m≥0;j+k+m=n

(2n)!

(j!k!m!)2
6−2n

and by trinomial expansion, we have

q2n(0, 0) ≤ cn
(2n)!

n!
3n6−2n,

where cn = maxj,k,m≥0;j+k+m=n(j!k!m!)−1. Moreover, for cn, the following holds and by Stirling formula
we get the result.

(2.1) cn ≤ c3n+3/2n−n−3/2en (c > 0 is independent of n ≥ 1).

In fact, by dividing n by 3 and dividing into the cases of remains, we see that

(2.2) cn ≤

 (m!)−3 (n = 3m),
(m!)−2((m+ 1)!)−1 (n = 3m+ 1),
(m!)−1((m+ 1)!)−2 (n = 3m+ 2).

hence, by Stirling formula, there exist constants c1, c2 > 0 such that

c1n
n+1/2e−n ≤ n! ≤ c2n

n+1/2e−n

and if we substitute this to the above, then we can get the result.

Question 2.7 Calculate the cases of 1-dimension and 2-dimension by using Stirling formula.

Question 2.8 Show the above inequation (2.2) and by using it, show (2.1), and verify the proof (calcu-
lation) of d = 3.

2.4 Galton-Watson process (GW process)

A Galton-Watson process is a family tree model. Let Zn ∈ Z+ = {0, 1, 2, . . . } be a number of males of
the n-th generation and let Z0 = 1. In general, we call the object as a particle and each particles born
Y number of particles as the next generation, where Y is a Z+-valued RV with a dist. (pk)k≥0, i.e.,
P (Y = k) = pk (k ≥ 0). Clearly, {Zn} is a Markov process with a transition probability such that

p(i, j) = P (Zn+1 = j| Zn = i) = P (

i∑
k=1

Yk = j) (i ≥ 1, j ≥ 0),

where {Yk} is i.i.d. with a dist. (pk). If Zn = 0, then a family tree is lost. Hence,

p(0, i) = 0 (i ≥ 1), p(0, 0) = 1

We assume existence of a mean of (pk):

m :=

∞∑
k=1

kpk ∈ (0,∞).

Now let q be an extinction probability of the GW-process starting from 1.

Then, by Z1
(d)
= Y and conditioned on {Z1 = k}, we have

q = P (extinction| Z0 = 1) = P (∃n ≥ 1;Zn = 0| Z0 = 1)

=
∑
k≥0

P (extinction| Z1 = k)P (Y = k) =
∑
k≥0

qkpk.

q = 1 is one solution of this equation, however, what is the condition of q ∈ [0, 1)?
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In order to answer the question, we introduce the following generating function f : q is a solution to
a equation s = f(s) (s ∈ [0, 1])

f(s) = E[sY ] =

∞∑
k=0

pks
k (|s| ≤ 1).

This series converges absolutely in |s| ≤ 1, and hence, it is infinitely differentiable. Moreover, it holds
that

f(0) = p0, f(1) = 1, f ′(1) =
∑
k≥1

kpk = m.

Theorem 2.5 A GW-process satisfies the following: Denote P1(·) = P (·| Z0 = 1).

m < 1 or [m = 1, p0 > 0] =⇒ P (∀n ≥ 1, Zn ≥ 1| Z0 = 1) = 0, i.e., q = 1

m > 1 =⇒ P (∀n ≥ 1, Zn ≥ 1| Z0 = 1) > 0, i.e., q < 1

Moreover, when m > 1, the extinction probability q is a unique solution to the equation f(s) = s on [0, 1).

Note that if p0 = 0,then it surely leaves offspring, and hence q = 0 (in this case m ≥ 1 holds).
Especially, if p1 = 1, then m = 1 and q = 0.

We first show some propositions. Since f is increasing in s ∈ [0, 1] from f(0) = p0 ≥ 0 to f(1) = 1,
we can consider the composition its self; we define f1 = f , fn+1 = f ◦ fn (n ≥ 1).

Proposition 2.5 For each n ≥ 1, the generating function of Zn is fn under the condition Z0 = 1,
i.e., E1[s

Zn ] = fn(s).

Proof. We denote P1 = P,E1 = E. Let gn(s) = E[sZn ] =
∑∞

k=0 s
kP (Zn = k). If n = 1, then under

{Z0 = 1}, by Z1
(d)
= Y , clearly g1(s) = E[sY ] = f(s). We assume for n ≥ 1, gn = fn. Under {Zn = k},

Zn+1
(d)
=

∑k
i=1 Yi and {Yi} are i.i.d. and

(d)
= Y . Hence

E[sZn+1 | Zn = k] = E[

k∏
i=1

sYi | Zn = k] =

k∏
i=1

E[sYi ] = f(s)k.

Therefore,

gn+1(s) =

∞∑
k=0

E[sZn+1 | Zn = k]P (Zn = k) =

∞∑
k=0

f(s)kP1(Zn = k) = gn(f(s)).

By the assumption of the induction, gn+1(s) = gn(f(s)) = fn(f(s)) = fn+1(s).

Proposition 2.6 E1[Zn] = mn (n ≥ 0).

Proof. We denote P1 = P,E1 = E. Note that m = E[Y ] = E[Z1] and E[Zn| Zn−1 = k] =

E[
∑k

i=1 Yi] = km, we have

E[Zn] =
∑
k≥1

E[Zn| Zn−1 = k]P (Zn−1 = k) =
∑
k≥1

kmP (Zn−1 = k) = mE[Zn−1].

By continuing this, we have E[Zn] = mn−1E[Z1] = mn.

[Proof of Theorem 2.5]
Since under P1, the generating function of Zn is fn, it holds P1(Zn = 0) = fn(0). note that {Zn = 0} ↑,

q = P1(
∃n ≥ 1;Zn = 0) = P1(

⋃
n≥1

{Zn = 0}) = lim
n→∞

fn(0).
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Hence, by fn+1(0) = f(fn(0)), letting n→ ∞ and by the continuity of f , we have q = f(q).
(Case: m < 1) By P1(Zn ≥ 1) ≤ E1[Zn] = mn, noting that {Zn ≥ 1} ↓, we have

0 = lim
n→∞

P1(Zn ≥ 1) = P1(
⋂
n≥1

{Zn ≥ 1}) = P1(
∀n ≥ 1, Zn ≥ 1) i.e., q = 1.

(Case: m = 1) If p0 > 0, then p0+p1 < 1. (In fact, if we assume p0+p1 = 1, thenm = p1 = 1−p0 < 1
and this contradicts.) Hence, noting that ∃k ≥ 2; pk > 0, we have

f ′(s) =
∑
k≥1

kpks
k−1 < f ′(1) =

∑
k≥1

kpk = m = 1 (0 < s < 1).

By mean value theorem for s ∈ (0, 1), ∃c ∈ (s, 1); f(1)− f(s) = f ′(c)(1− s) < 1− s. By f(1) = 1, we get
f(s) > s (0 < s < 1). Moreover, by f(0) = p0 > 0, the solution for f(s) = s in [0, 1] is s = 1 only. Thus,
q = 1.

(Case: m > 1) Note that p0 + p1 < 1 (because if p0 + p1 = 1, then m = p1 ≤ 1). By f ′(1) = m > 1
and by the continuity of f ′,

∃η > 0; 1− η < ∀s < 1, 1 < f ′(s) < f ′(1) = m

Hence, if 1 − η < s < 1, then f(s) < s. Since f(0) = p0 ≥ 0, and by using intermediate value theorem
for g(s) = f(s) − s we have ∃s1 ∈ [0, 1); f(s1) = s1. We show the uniqueness of the solution for this.
If ∃s2 ∈ [0, 1); s1 < s2, f(s2) = s2, then g(si) = 0 and g(1) = 0 by f(1) = 1. By Roll’s theorem
0 ≤ s1 <

∃ξ1 < s2 <
∃ξ2 < 1; g′(ξ1) = g′(ξ2) = 0, i.e., f ′(ξ1) = f ′(ξ2) = 1. Moreover, by p0 + p1 < 1,

s ∈ (0, 1) =⇒ f ′′(s) =
∑
k≥2

k(k − 1)pks
k−2 > 0.

Hence, f ′(s) is strictly increasing for s ∈ (0, 1). This contradicts f ′(ξ1) = f ′(ξ2) = 1. Thus, the solution
of f(s) = s is only q = s1 or q = 1. Furthermore, if q = 1, then 1 = q = limn→∞ fn(0), and for sufficiently
large n≫ 1, fn(0) > 1− η. By the result shown as above, fn+1(0) = f(fn(0)) < fn(0). This contradicts
fn is increasing (in n) Therefore, q = s1 ∈ [0, 1).

Example 2.3 If p0 = p2 = 1/2, then the mean is m = 1, however, this family tree becomes extinct
someday.

Example 2.4 Lotka found in 1939 the distribution of male descendants of Americans is a geometric
distribution.

P (Y = 0) =
1

2
, P (Y = k) =

1

5

(
3

5

)k−1

(k ≥ 1).

In this case,

m =
1

5

∑
k≥1

k

(
3

5

)k−1

=
5

4
> 1.

Hence, the extinction probability q is a solution s = q < 1 for

s = f(s) =
1

2
+

1

5

∑
k≥1

(
3

5

)k−1

sk, that is,
3

5
s2 − 11

10
s+

1

2
= 0

Then s = 5/6, 1 and q = 5/6. Therefore, the survival probability of a family tree is 1/6.

Question 2.9 Calculate m = 5/4 and a solution s = 5/6, 1 for s = f(s).
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3 Martingales

Let {Mn}n≥1 be a stoch. proc. with a filtration (Fn) and {Mn} be (Fn)-adapted.
・{Mn} is a martingale, more exactly, an (Fn)-martingale

def⇐⇒ Mn ∈ L1, E[Mn+1| Fn] =Mn a.s. ∀n ≥ 1.
⇐⇒ Mn ∈ L1, ∀n ≥ 0, ∀A ∈ Fn, E[Mn+1;A] = E[Mn;A]

In general, for a RV X and sub σ-add. class G ⊂ F , E[X| G] is called a conditional expectation
of X under G, which is defined by Radon-Nikodym Theorem (R-N Th.).

3.1 Radon-Nikodym theorem and conditional expectations

In general, for a finite measure µ on (Ω,G) and non-negative integrable G-measurable ft f ; f ≥ 0, µ-a.e.,

f ∈ L1, set dν = fdµ, i.e., ν(A) =

∫
A

fdµ (A ∈ F), then it holds that µ(A) = 0 =⇒ ν(A) = 0. It is

denoted as ν ≪ µ and ν is called absolute continuous with respect to µ, and f is called a density
function of ν (w.r.t. µ).

Radon-Nikodym Theorem is that the inverse holds.

Theorem 3.1 (Radon-Nikodym Theorem) Let µ, ν be finite measures on a measurable space

(Ω,G). If ν ≪ µ, then ∃1f ; f ≥ 0. µ-a.e., f ∈ L1(dµ); dν = fdµ, i.e., ν(A) =

∫
A

fdµ (A ∈ G). The

uniqueness means µ-a.e., i.e., if f̃ satisfies the same conditions, then f = f̃ , µ-a.e.

The difference of two finite measures is called a finite signed measure. The above theorem holds
for a finite signed measure ν. (Of course, in this case, the condition f ≥ 0 µ-a.e. is omitted.)

For the proof, we only describe a construction of a density f . Let h ∈ H
def⇐⇒

∫
A

hdµ ≤ ν(A)

(∀A ∈ G) (since a constant ft 0 satisfies this condition, H ̸= ∅). Then

∃hn ∈ H; lim
n→∞

∫
Ω

hndµ = sup
h∈H

∫
Ω

hdµ.

Thus, if we set fn := maxk≤n hk, then we can see fn ∈ H, and hence, by letting f := lim fn, we

have f ∈ H and

∫
Ω

fdµ = sup
h∈H

∫
Ω

hdµ. This is the desired one. To show this we need a further result;

Hahn-Jordan decomposition. However, we don’t describe the detail.

Now by using this result we define a conditional expectation.
Let X be a RV and G ⊂ F be a sub σ-add. class.
A conditional expectation Y (ω) = E[X| G](ω) of X under G is defined such that Y is G-

measurable and ∀A ∈ G, E[Y ;A] = E[X;A].
Then, E[E[X| G];A] = E[X;A] (∀A ∈ G) holds.

Let Q(A) := E[X;A] (A ∈ G). This is a finite signed measure on (Ω,G). Clearly, if P (A) = 0,
then Q(A) = 0, i.e., Q ≪ P ; Q is absolute continuous w.r,t. P . Hence, by Radon-Nikodym Theorem,

∃1Y = Y (ω); G-measurable; Q(A) =

∫
A

Y dP = E[Y ;A], i.e., E[X;A] = E[Y ;A] (A ∈ G) and this is

unique P -a.s. Then, we denote Y as Y (ω) = E[X| G](ω).

[Properties of a conditional expectations]

Proposition 3.1 Let X,Xn be F-measurable and integrable RVs and G ⊂ F be a sub σ-add. class.
The following hold:

(1) X ∈ G =⇒ E[X| G] = X a.s.
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(2) For a1, a2 ∈ R, E[a1X1 + a2X2| G] = a1E[X1| G] + a2E[X2| G] a.s.

(3) X1 ≤ X2 a.s. =⇒ E[X1| G] ≤ E[X2| G] a.s.

(4) |E[X| G]| ≤ E[|X|| G] a.s.

(5) Y ∈ G, XY,X ∈ L1 =⇒ E[XY | G] = Y E[X| G] a.s.

(6) 0 ≤ Xn ↑ X a.s. なら 0 ≤ E[Xn| G] ↑ E[X| G] a.s.

(7) Let 1 ≤ p, q ≤ ∞; 1/p+ 1/q = 1. X ∈ Lp, Y ∈ Lq =⇒

E[XY | G] ≤ E[|X|p| G]1/pE[|Y |q| G]1/q a.s. if 1 < p, q <∞.

If p = 1, q = ∞, then E[XY | G] ≤ E[|X|| G]∥Y ∥∞.
Especially, 1 ≤ p1 < p2 ≤ ∞, X ∈ Lp2 =⇒ E[|X|p1 | G]1/p1 ≤ E[|X|p2 | G]1/p2 a.s.

(8) Let 1 ≤ p ≤ ∞. Xn → X in Lp =⇒ E[Xn| G] → E[X| G] in Lp.

(9) G1 ⊂ G2 ⊂ F : sub σ-add. classes =⇒ E[E[X| G2]| G1] = E[X| G1] a.s.

(10) (Jensen’s inequality)　X ∈ L1, φ is convex on R =⇒ φ(E[X| G]) ≤ E[φ(X)| G] a.s.

Proof. We always let ∀A ∈ G. (1) is clear by E[X;A] = E[X;A] and X ∈ G.
(2) Let Y1 = E[X1| G], Y2 = E[X2| G], Y = E[a1X1 + a2X2| G]. Then E[X1;A] = E[Y1;A],

E[X2;A] = E[Y2;A]. E[a1X1 + a2X2;A] = E[Y ;A], and hence, E[Y ;A] = a1E[X1;A] + a2E[X2;A] =
a1E[Y1;A] + a2E[Y2;A] = E[a1Y1 + a2Y2;A]. Thus, we have Y = a1Y1 + a2Y2 a.s.

(3) E[E[X1| G];A] = E[X1;A] ≤ E[X2;A] = E[E[X2| G];A] and both are G-measurable. By the
arbitrary of A ∈ G we have the result. (→ the next question.)

(4) By −|X| ≤ X ≤ |X| and by the previous result, we have −E[|X|| G] ≤ E[X| G] ≤ E[|X|| G] a.s.
(5) It is enough to show the case Y = 1B (B ∈ G). By E[XY ;A] = E[X;A∩B] = E[E[X| G];A∩B] =

E[1BE[X| G];A], it is obvious.
(6) By (3) the non-negativity and the monotonicity are clear. It is enough to show limE[Xn| G] =

E[X| G] a.s. By MCT, we have E[limE[Xn| G];A] = limE[E[Xn| G];A] = limE[Xn;A] = E[limXn;A] =
E[X;A] = E[E[X| G];A]. Since both insides are G-measurable and A ∈ G is arbitrary, it is clear

(7) It is possible to show by the same way as in the proof of Hölder’s inequality, because a conditional
expectation satisfies linearity, monotonicity and |E[X| G]| ≤ E[|X|| G] a.s.,

(8) is clear, since by Hölder the following holds: E |E[Xn| G]− E[X| G]|p ≤ E [E[|Xn −X|p| G]] =
E|Xn −X|p.

(9) It is enough to show that for ∀A ∈ G1, E[E[X| G2];A] = E[X;A]. however it is clear by A ∈ G2.
(10) A convex function can be expressed as by the supremum of linear functions which are lower than or

equal to it. Hence, let φ(x) ≥ ax+b = ψ(x), then E[φ(X)| G] ≥ E[aX+b| G] = aE[X| G]+b = ψ(E[X| G])
Therefore, by taking the supremum on ψ (≤ φ) of the last term we get the result.

Question 3.1 Let G ⊂ F and X,Y ∈ G and ∈ L1. Show that if for ∀A ∈ G, E[X;A] ≤ E[Y ;A], then
X ≤ Y a.s.

[Ans.] It is enough to show the case X = 0 by considering Y −X as Y . That is, we show that if for
∀A ∈ G, E[Y ;A] ≥ 0, then Y ≥ 0 a.s. Set A = An := {Y ≤ −1/n}, then 0 ≤ E[Y ;An] ≤ −(1/n)P (An)
and P (An) = 0. Hence, P (Y < 0) = P (

⋃
An) ≤

∑
P (An) = 0.

Proposition 3.2 If X ∈ L1 is indep. of G, then E[X| G] = EX a.s. Furthermore, if X ∈ G, then
X = EX (constant) a.s. Here note that X is indep. of G def⇐⇒ P ({X ≤ a} ∩ A) = P (X ≤ a)P (A)
(∀a ∈ R, A ∈ G)

Proof. By independence of X,G, it is easy to see that for ∀A ∈ G, E[X1A] = EXE[1A] = EXP (A)
holds. This is equivalent to the desired result.
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3.2 Uniform integrability

Let (Ω,F , P ) be a probability space. (However, we may set P be a finite measure in this subsection.)
・A sequence of measurable fts (=functions) {Xn} is uniform integrable (simply, we say UI.)

def⇐⇒ lim
a→∞

sup
n≥1

E[|Xn|; |Xn| ≥ a] = 0

⇐⇒ (U1) supnE|Xn| <∞, [boundedness of means]
(U2) P (A) → 0 =⇒ supnE[|Xn|;A] → 0 [uniform absolute continuity of integrals],

i.e.,
∀ε > 0, ∃δ > 0; ∀A ∈ F ;P (A) < δ,E[|Xn|;A] < ε.

Proof. (⇒) (U1) follows from the following. (The finiteness of P (Ω) is need.)

E|Xn| = E[|Xn|; |Xn| ≥ a] + E[|Xn|; |Xn| < a] ≤ sup
n
E[|Xn|; |Xn| ≥ a] + aP (Ω).

(U2) is immediately obtained by the following:

E[|Xn|;A] = E[|Xn|;A ∩ {|Xn| ≥ a}] + E[|Xn|;A ∩ {|Xn| < a}] ≤ E[|Xn|; |Xn| ≥ a] + aP (A).

It is enough to fix a sufficiently large a > 0 such that the last 1st term is lower than ε/2, and take
δ = ε/(2a).

(⇐) By P (|Xn| ≥ a) ≤ E|Xn|/a and (U1), letting a → ∞, this probability converges to 0 uniform.
Hence, by (U2), the desired result holds.

The following proposition is immediately follows:

Proposition 3.3 (1) If ∃Y ∈ L1; |Xn| ≤ Y a.s., then {Xn} is UI.
(2) If ∃p > 1; supnE[|Xn|p] <∞, then {Xn} is UI.
(3) If {Xn}: UI and Xn → X, a.s., then X ∈ L1.
(4) If {Xn}: UI, Y ∈ L1, then {Xn + Y } is UI.
(5) If each {Xn}, {Yn} is UI, then {Zn = Xn + Yn} is so.

Proof. (1) It is enough to show the case without a.s. and then, by {|Xn| ≥ a} ⊂ {Y ≥ a},
E[|Xn|; |Xn| ≥ a] ≤ E[Y ;Y ≥ a]. Y is integrable and absolute continuity of integrals implies the result.

(2) Let K := supnE[|Xn|p] (< ∞). By Chebichev, P (|Xn| ≥ a) ≤ K/ap, and by Hölder, noting
that 1/q = 1 − 1/p, we have E[|Xn|; |Xn| ≥ a] ≤ E[|Xn|p]1/pE[1{|Xn|≥a}]

1/q ≤ K1/pP (|Xn| ≥ a)1/q ≤
K/ap/q = K/ap−1 → 0 (a→ ∞).

(3) It is obvious by Fatou’s Lem. and boundedness of means.
(4), (5) are clear by checking (U1),(U2).

The important result is the following convergence theorem.

Theorem 3.2 If Xn → X, a.s. and {Xn} is UI, then Xn → X in L1, i.e., E|Xn −X| → 0.

This is obtained as a corollary of the following result.

Theorem 3.3 Let Xn ∈ L1, Xn → X, a.s. The following are equivalent:
(1) {Xn}: UI, (2) Xn → X in L1, i.e., E|Xn −X| → 0, (3) E|Xn| → E|X| <∞.

This result is an extension of Lebesgue’s convergence theorem, because, if a sequence of functions is
estimated by an integrable function, then it is UI.

Proof.
(1) ⇒ (2) Since {Xn} is UI, by the assumption; Xn → X a.s. and by the above prop., X ∈ L1.

Hence, again by the above prop. {Xn−X} is also UI. Moreover, Xn → X, a.s. implies in pr. For ∀ε > 0,
P (|Xn −X| ≥ ε) → 0.

E|Xn −X| ≤ E[|Xn −X|; |Xn −X| ≥ ε] + εP (|Xn −X| < ε) ≤ E[|Xn −X|; |Xn −X| ≥ ε] + ε.
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Therefore, by letting n → ∞, since {Xn − X} is UI and hence it is uniform abso. continuous, the 1st
term goes to 0. Moreover, ε > 0 is arbitrary, we have limE|Xn −X| = 0.

(2)⇒ (3) is clear (by |E|Xn|−E|X|| ≤ E|Xn−X|. Note thatX ∈ L1 by E|X| ≤ E|X−Xn|+E|Xn| <
∞.)

(3) ⇒ (1) For a continuous point a > 0 of the distribution of |X|, i.e., P (|X| = a) = 0, we can show
E[|Xn|; |Xn| ≥ a] → E[|X|; |X| ≥ a] (n → ∞). If it is true, then by the abso. continuity of integral,
supnE[|Xn|; |Xn| ≥ b] → 0 (b→ ∞) can be shown. We show these in order.

For ∀a > 0, set Xa = X1{|X|<a}. Then |Xa| ≤ a and if |X(ω)| ̸= a, then Xa
n(ω) → Xa(ω) (n → ∞)

(→ show it). Therefore, For a > 0;P (|X| = a) = 0, it holds Xa
n → Xa, a.s. Since |Xa

n| ≤ a and by
bounded convergence theorem, we have E|Xa

n| → E|Xa|. Thus, by the assumption of (3),

E[|Xn|; |Xn| ≥ a] = E|Xn| − E|Xa
n| → E|X| − E|Xa| = E[|X|; |X| ≥ a].

Moreover, by the abso. continuity of integrals, For ∀ε > 0, ∃a > 0 (sufficiently large); The last
term of the above = E[|X|; |X| ≥ a] < ε/2. Furthermore, since this a can be taken as a contin-
uous point of the dist. of |X|, we have ∃N ; ∀n ≥ N,E[|Xn|; |Xn| ≥ a] < ε. On the other hand,
for n < N , by the abso.continuity of integrals, ∃bk, k = 1, 2, . . . , N ;E[|Xk|; |Xk| ≥ bk] < ε. we get
∀b ≥ max{a, b1, · · · , bN}, supnE[|Xn|; |Xn| ≥ b] ≤ ε, and the desired result is obtained.

Question In the above, show that if Xn(ω) → X(ω) and |X(ω)| ̸= a, then Xa
n(ω) → Xa(ω)

(n→ ∞), Moreover, give a counterexample when |X(ω)| = a.
(If 0 ≤ X(ω) < a, then the first half is clear. As an example let X(ω) = a and Xn(ω) = a− 1/n.)

Question 3.2 Show an example of {Xn} such that Xn → ∃X a.s. and EXn → EX, however, {Xn} is
not UI.

On a Lebesgue prob. sp. (0, 1), let Xn be n on (0, 1/n), −n on (1 − 1/n, 1), 0 on otherwise. Then
Xn → 0, EXn = 0, however, if n ≥ a > 0, then E[|Xn|; |Xn| ≥ a] = E|Xn| = 2, and hence, it is not UI.

3.3 Definition and properties of martingales, Doob’s decomposition

(Mn,Fn)n≥1 is a martingale if Fn ↑⊂ F sub σ-add.classes, Mn ∈ Fn is integrable and satisfies
E[Mn+1| Fn] =Mn a.s. ∀n ≥ 1, i.e., ∀n ≥ 1, ∀A ∈ Fn, E[Mn+1;A] = E[Mn;A].

Instead of this condition, if E[Mn+1| Fn] ≥ Mn a.s. ∀n ≥ 1, then it is called a sub-martingale. If
if the inequality is reverse, then it is called a super-martingale.

Clearly, if (Mn) is a martingale, then the means are constant, i.e., ∀n ≥ 1, EMn = EM1. If it is a
sub-martingale, then the means are increasing i.e., EMn ↑.

In case of n ≥ 0, it is the same we may change M1 to M0.

· For a sequence of independent RVs {Xn}n≥1, let Mn =
∑

k≤nXk and Fn = σ(X1, . . . , Xn). If
EXn = 0 (n ≥ 1), then (Mn,Fn) is a martingale. (If EXn ≥ 0 (n ≥ 1), then it is a sub-martingale.)

· For an integrable RV X and a filtration {Fn}, let Mn := E[X| Fn], then this is a martingale.

Question 3.3 Check the above two results.

In the following, a filtration (Fn) is already given and we don’t denote it.

Proposition 3.4 (1) If {Mn} is a martingale, φ is convex on R and φ(Mn) ∈ L1 (∀n ≥ 1), then
{φ(Mn)} is a sub-martingale. Especially, |Mn|,M2

n are martingale (for M2
n if it in L1).

(2) If {Xn} is a sub-martingale, φ is convex and increasing on R and φ(Xn) ∈ L1 (∀n ≥ 1), then
{φ(Xn)} is also a sub-martingale.

(3) For each k ≥ 1, let {X(k)
n } be a sub-martingale. Fix K < ∞. Then M

(K)
n := maxk≤K X

(k)
n is a

sub-martingale.
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Proof. (1) By Jensen’s inequality for conditional expectations,

E[φ(Mn+1)| Fn] ≥ φ(E[Mn+1| Fn]) = φ(Mn) a.s.

(2) In the above, the last equation is changed to inequality “≥”, because φ is increasing.
(3) It is enough to show the case of two (Xn), (Yn). Let Zn := Xn ∨ Yn. We have E|Zn| ≤

E|Xn|+ E|Yn| <∞ and

Xn ≤ E[Xn+1| Fn] ≤ E[Zn+1| Fn], Yn ≤ E[Yn+1| Fn] ≤ E[Zn+1| Fn],

Hence, we have the desired result.

Theorem 3.4 (Doob’s decomposition theorem) If (Xn) is a sub-martingale, then
∃1(Mn), (An); Xn = Mn + An. (Mn) is a martingale, (An) is a predictable increasing process
starting from 0, i.e., 0 = A1 ≤ An ↑ a.s., An is Fn−1-measurable (that is, predictable.)

Proof. We decompose Xn as follows, and we may set {·} part be Mn, the rest part be An.

Xn = X1 +

n−1∑
k=1

(Xk+1 −Xk) =

{
X1 +

n−1∑
k=1

(Xk+1 − E[Xk+1| Fk])

}
+

n−1∑
k=1

(E[Xk+1| Fk]−Xk)

For the uniqueness, if Xn =Mn +An = M̃n + Ãn, then Mn − M̃n = Ãn −An. This is a martingale and
predictable, i.e., Fn−1-measurable. Therefore, for every n ≥ 1,

Ãn+1 −An+1 = E[Mn+1 − M̃n+1| Fn] =Mn − M̃n = Ãn −An. a.s.

Hence, Ãn −An = Ã0 −A0 = 0. a.s.

3.4 Stopping times and optional sampling theorem

Let (Fn)n≥0 be a filtration, i.e., Fn is an increasing sub σ-add. class.
Note that if {Xn}≥0 is a stochastic process, then by (Fn)-adaptability, it holds σ(X0, X1, . . . , Xn) ⊂

Fn (∀n ≥ 0).
An Z+ = {0, 1, 2, . . . ,∞}-valued RV τ = τ(ω) is a stopping time; ST if

def⇐⇒ ∀n ≥ 0, {τ ≤ n} ∈ Fn. ⇐⇒ ∀n ≥ 0, {τ = n} ∈ Fn.

Question 3.4 Show that the following are also ST’s.
(1) τ ≡ n (a constant time)
(2) If σ, τ are STs, then σ ∧ τ , σ ∨ τ are so.
(3) For a real-valued process {Xn}n≥0 and B ∈ B1, a hitting time to B:

τB := inf{n ≥ 0;Xn ∈ B} (= ∞ if {·} = ∅).

Note that if we omit the starting point X0, then changing n ≥ 0 to n ≥ 1 in the above definition.

Note. In (3), an exit time σB = sup{n ≥ 0;Xn ∈ B} (= 0 if {·} = ∅) is not a ST in general (→
Explain why.)

In the following we assume that
[Assumption] (Ω,F , P ) is complete and F0 contains all null sets.
For a ST τ , set

Fτ := {A ∈ F ; ∀n ≥ 0, A ∩ {τ ≤ n} ∈ Fn}.

(It is possible to change the above “A ∩ {τ ≤ n} ∈ Fn” to “A ∩ {τ = n} ∈ Fn”.

Question 3.5 (1) Show the above Fτ is a σ-add. class and τ is Fτ -measurable.
(2) For ST’s σ, τ , if σ ≤ τ a.s., then Fσ ⊂ Fτ .
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In (2) by “σ ≤ τ a.s.”, we need the assumption that F0 contains all null sets. Because A∩ {τ ≤ n} =
(A ∩ {σ ≤ n}) ∩ {τ ≤ n} holds except the difference of a null set {σ > τ},

A martingale means an equitable game. If it is stopped at a stopping time, then what is happened?
Does the equitableness not change?

The following result ensure it, however, the boundedness of ST’s are needed.

Theorem 3.5 (Optional Sampling Th.) Let {Xn} be a sub-martingale. If ST’s σ, τ are bounded
a.s. and σ ≤ τ a.s., then E[Xτ | Fσ] ≥ Xσ a.s.

The boundedness of ST’s can not be omitted. In fact, let {Xn} be a one-dimensional simple RW
starting from 0, which is a martingale. For a ≤ −1, set σ = 0 and τ = inf{n ≥ 0;Xn ≥ a}, then they are
ST’s such that σ ≤ τ . However τ is not bounded and EXσ = EX0 = 0, EXτ = a < 0.

Question 3.6 Show Xτ in the theorem is Fτ -measurable and integrable.

We may set σ ≤ τ ≤ ∃N a.s. By Xτ =
∑

n≤N Xn1{τ=n}, the integrability is clear. Moreover, by
{Xn ≤ a} ∩ {τ = n} ∈ Fn, measurability is clear.

[Proof of Optional Sampling Theorem]. We may set σ ≤ τ ≤ ∃N a.s. It is enough to show
that for ∀A ∈ Fσ, E[Xτ ;A] ≥ E[Xσ;A]. Let 0 ≤ n ≤ N and set An := A ∩ {σ = n}, then An ∈ Fn.
Noting that for each n ≤ k ≤ N , An ∩ {τ ≥ k + 1} = An ∩ {τ ≤ k}c = An \ (An ∩ {τ ≤ k}) ∈ Fk, by
sub-martingale property, we have

E[Xk;An ∩ {τ ≥ k}] = E[Xk;An ∩ {τ = k}] + E[Xk;An ∩ {τ ≥ k + 1}]
≤ E[Xτ ;An ∩ {τ = k}] + E[Xk+1;An ∩ {τ ≥ k + 1}].

Continuing the same calculation for the 2nd term, we have

≤
N∑

j=k

E[Xτ ;An ∩ {τ = j}] = E[Xτ ;An ∩ {τ ≥ k}].

Let k = n, then by σ ≤ τ a.s., we have An = A ∩ {n = σ ≤ τ} = An ∩ {τ ≥ n} except a difference of
a null set. Hence, E[Xσ;An] = E[Xn;An] ≤ E[Xτ ;An]. Thus, by summing on 0 ≤ n ≤ N , E[Xσ;A] ≤
E[Xτ ;A].

Corollary 3.1 (Optional stopping th.) Let (Xn,Fn) be a sub-martingale and τ be a ST. Then
(Xτ

n ,Fτ
n) := (Xn∧τ ,Fn∧τ ) is also a sub-martingale.

n ∧ τ is also a ST, and if m < n, then m ∧ τ ≤ n ∧ τ ≤ n is bounded. Hence, by OST it is clear.

3.5 Sub-martingale inequalities and convergence theorems

Kolmogorov’s maximal inequality for a sum of independent RVs which is used in the proof of string LLN,
can be extended to the following for a martingale:

Theorem 3.6 (sub-martingale inequality) (1) Let (Xn) be a sub-martingale. Then

∀a > 0, aP (max
k≤n

Xk ≥ a) ≤ E[Xn;max
k≤n

Xk ≥ a] ≤ EX+
n .

(2) Especially, if (Xn) is a sub-martingale and Xn ≥ 0 a.s., then aP (maxk≤nXk ≥ a) ≤ EXn

(∀a > 0). Moreover, if for some p > 1, Xn ∈ Lp (∀n), then[
Emax

k≤n
Xp

k

]1/p
≤ p

p− 1
∥Xn∥p.
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If {Mn} is a martingale, then {|Mn|} is a sub-martingale. On the application, the following is useful:

Corollary 3.2 If (Mn) is a martingale, then aP (maxk≤n |Mk| ≥ a) ≤ E|Mn| (∀a > 0).
Moreover, if Mn ∈ Lp (∃p > 1; ∀n), then[

Emax
k≤n

|Mk|p
]1/p

≤ p

p− 1
∥Mn∥p.

Furthermore, the following also holds:

Corollary 3.3 Let n ≥ 0. If (Xn) is a sub-martingale, then

∀a > 0, aP (min
k≤n

Xk ≤ −a) ≤ EXn − E[Xn;min
k≤n

Xk ≤ −a]− EX0 ≤ EX+
n − EX0.

Note that if n ≥ 1, then X0 may be changed to X1.

[Proof of sub-martingale inequality] (1) Let (Xn) be a sub-martingale and ∀a > 0. We divide
an event A = {maxk≤nXk ≥ a} by using first times such that Xk ≥ a, i.e., let

A0 = {X0 ≥ a}, Ak = {Xk ≥ a, ∀j ≤ k − 1, Xj < a},

then A =
⋃

k≤nAk is a disjoint union and Ak ∈ Fk. Hence, we have

E[Xn;A] =
∑
k≤n

E[Xn;Ak] ≥
∑
k≤n

E[Xk;Ak] ≥ a
∑
k≤n

P (Ak) = aP (A).

(2) On the later half, we use

p

∫ ∞

0

ap−11{a≤Y }da = p

∫ Y

0

ap−1da = Y p.

Note that Xk ≥ 0 a.s. Let Y = maxk≤nXk. Then by the above and martingale ineq., we have

EY p = p

∫ ∞

0

ap−1P (Y ≥ a)da ≤ p

∫ ∞

0

ap−1 1

a
E[Xn;Y ≥ a)da

= pE

[
Xn

∫ Y

0

ap−2da

]
=

p

p− 1
E
[
XnY

p−1
]
.

Moreover, by using Hölder for the last term, noting that 1/q = 1− 1/p = (p− 1)/p,

(The last term) ≤ p

p− 1
∥Xn∥p(EY p)1/q.

The desired inequality is obtained.

[Proof of Corollary 3.3] Let τ be a hitting time to (−∞, a], i.e.,

τ = min{k ≤ n;Xk ≤ −a} (= ∞ if {·} = ∅),

Moreover, let σ = τ ∧ n. Then these are ST’s and σ ≤ n is bounded. B = {mink≤nXk ≤ −a} = {τ ≤
n} =

⋃
k≤nBk, where Bk = {τ = k} is an event of that Xk is equal to or lower than −a at first at time

k. Furthermore, if k < n, then Bk = {σ = k} and Bn ⊂ {σ = n} (which contains {τ = ∞}). Thus,
Xσ = Xk ≤ −a on Bk. Hence, by OST, X0 ≤ E[Xσ| F0], Xσ ≤ E[Xn| Fσ] a.s. Thus,

EX0 ≤ EXσ = E[Xσ;B] + E[Xσ;B
c] =

∑
k≤n

E[Xσ;Bk] + E[Xσ;B
c] ≤ −aP (B) + E[Xσ;B

c].

Therefore, noting that Bc ∩ {σ = k} = ∅ ∈ Fk, that is, B
c ∈ Fσ, we have

aP (B) ≤ E[Xσ;B
c]− EX0 ≤ E[Xn;B

c]− EX0 ≤ E[X+
n ]− EX0.
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· Convergence Theorem of Martingales

Theorem 3.7 (sub-martingale convergence theorem) If a sub-martingale (Xn,Fn) satisfies
supnE[X+

n ] <∞, then Xn converges a.s., i.e., P (∃ limXn) = 1.

The condition for a sub-martingale: supnE[X+
n ] <∞ si equivalent to supnE|Xn| <∞. (It is obvious

from E[X+
n ]− E[X−

n ] ≥ EX1, i.e., E[X−
n ] ≤ E[X+

n ]− EX1.)

In order to show this result, we need the following result of “cross number of a sub-martingale”

Theorem 3.8 (Cross Number Theorem) Let HN be a cross number of a sample path of a sub-
martingale (Xn,Fn) for an interval (a, b) from left to right until n ≤ N . Then it holds (b − a)EHN ≤
E[(XN − a)+].

[Proof of sub-martingale convergence theorem]

{lim inf Xn < lim supXn} ⊂
⋃

a,b∈Q;a<b

{lim inf Xn < a < b < lim supXn}.

Let the right hand be Aa,b and it is enough to show P (Aa,b) = 0. On this event, (Xn) crosses infinitely
many times for the interval (a, b) (from left to right). Let H be a cross number of (Xn)n≥1 from a to b.
Then it is enough to show P (H = ∞) = 0. Let HN be a cross number of (Xn)n≤N from a to b. Then by
Cross Number Theorem, we have

EHN ≤ E[(XN − a)+]

(b− a)
≤ sup

N≥1

EX+
N + |a|

(b− a)
<∞.

and by monotonicity and by convergence theorem, 0 ≤ EHN ↑ EH. Thus, EH < ∞. This means
H <∞ a.s., i.e., P (H = ∞) = 0.

In general, let HN (ω) = HN (ω; a, b) be a cross number of a sample path {Xn(ω)}1≤n≤N of a stochastic
process {X1, . . . , XN} for an interval (a, b) from left to right. This can be expressed by using hitting times;
For n > N , let Xn ≡ XN and let τ1 = min{n ≥ 1;Xn ∈ (−∞, a]}, τ2 = min{n ≥ τ1;Xn ∈ [b,∞)}, and
similarly we define τ3, τ4, . . . (if {·} = ∅, then they are ∞). These are ST’s (→ the next question). If we
set m = max{n ≤ N ; τn <∞}), then it can be defined as HN = HN (a, b) := [m/2] ≥ 0 ([·] is a Gaussian
notion, i.e., an integer part). Corresponding to 2k − 1 ≤ m, 2k ≤ m, it holds Xτ2k−1

≤ a,Xτ2k ≥ b.
For simplicity, denote H = HN . H = [m/2], i.e., m = 2H or 2H + 1.
(i) In case of m = 2H + 1, then XN < b (if not, then τ2H+2 is finite) and

H∑
k=1

(Xτ2k+1
−Xτ2k) ≤ (a− b)H = −(b− a)H.

(ii) In case of m = 2H, then XN > a, and

H−1∑
k=1

(Xτ2k+1
−Xτ2k) + (XN −Xτ2H ) =

H−1∑
k=1

(Xτ2k+1
−Xτ2k) + (a−Xτ2H ) + (XN − a)

≤ (a− b)H + (XN − a).

Hence, let Yk = Xτk if k ≤ m, = XN if k > m. By H ≤ N , the above inequality is

N∑
k=1

(Y2k+1 − Y2k) =

H∑
k=1

(Y2k+1 − Y2k) ≤ −(b− a)H + (XN − a)+.

Question 3.7 Show the above τk is a ST.
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{τ1 = n} = {Xn ≤ −a,X1, . . . Xn−1 > a}, {τ2 = n} = {Xn ≥ b, τ1 < n,Xτ1+1, . . . Xn−1 < b} are both
in Fn.

[Proof of Cross Number Theorem] For each k, τk ∧ N is a bounded (Fn)-ST. Let Gk = Fτk

and Yk = Xτk∧N . Then by OST, (Yk,Gk) is also a sub-martingale. Hence, 0 ≤
∑N

k=1E[Y2k+1 − Y2k] ≤
−(b− a)EHN + E[(XN − a)+].

Theorem 3.9 For a sub-martingale (Xn,Fn), the following are equivalent:
(1) {Xn} is UI.
(2) {Xn} converges in L1, i.e., Xn → ∃X in L1.
(3) {Xn} converges a.s. and set X = limXn, then X ∈ L1, EXn → EX, E[X| Fn] ≥ Xn a.s.

Proof. Recall that under the conditions Xn ∈ L1, Xn → X a.s., the following are equivalent: {Xn}:
UI, E|Xn −X| → 0 , E|Xn| → E|X| <∞.

(1) ⇒ (2): UI implies (U1) supE|Xn| < ∞. Hence by sub-martingale convergence theorem we have
Xn → ∃X a.s. and in L1 by UI.

(2) ⇒ (3): |E|Xn| − E|X|| ≤ E|Xn −X| → 0 and supE|Xn| < ∞, because a convergence sequence

is bounded. By sub-martingale convergence theorem, we have Xn → ∃X̃ a.s. On the other hand L1

convergence implies Xnk
→ X a.s. for a suitable sub-sequence. Thus, X̃ = X a.s. It remains to show

that E[X| Fn] ≥ Xn a.s. By sub-martingale property, for ∀n, ∀A ∈ Fn, E[Xn+k;A] ≥ E[Xn;A] (
∀k ≥ 1).

Hence, letting k → ∞, we have E[X;A] ≥ E[Xn;A]. The result is obtained.
(3) ⇒ (1): By a.s. convergence it is enough to show E|Xn| → E|X|, because we have (Xn): UI. By

the assumption, for ∀n, ∀A ∈ Fn, E[X;A] ≥ E[Xn;A]. Let A = {Xn ≥ 0}, then EX+
n ≤ EX+, i.e,

supEX+
n ≤ EX+ < ∞. On the other hand, by X+

n → X+ a.s. and by Fatou, we have lim inf EX+
n ≥

EX+. Hence, limEX+
n = EX+. Similarly, we have limEX−

n = EX−. Therefore, limE|Xn| = E|X|.
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4 Continuous-time Markov Chains

Let t ≥ 0 be a continuous-time parameter. Let S be a countable set. An S-valued RVs (a stochastic
process) (Xt)t≥0 is a continuous-time Markov chain if it has the following Markov property;

For s, t ≥ 0, i, j, kuℓ
∈ S, 0 ≤ uℓ < s (ℓ ≤ ℓ0),

P (Xt+s = j| Xs = i,Xuℓ
= kuℓ

(ℓ ≤ ℓ0)) = P (Xt+s = j| Xs = i).

Moreover, we also assume the time-homogeneity;

P (Xt+s = j| Xs = i) = P (Xt = j| X0 = i).

We define this as a transition probability; qt(i, j) = P (Xt = j| X0 = i).

4.1 Exponential times

In order to construct a continuous-time Markov chain from a discrete-time Markov chain, we can consider
changing jump intervals to random.

Hence, we introduce an exponential time (= a random time which has an exponential distribution).

Definition 4.1 　 For a constant α > 0, a random variable τ = τ(ω) is distributed by an exponen-
tial distribution with parameter α, i.e,

P (τ > t) =

∫ ∞

t

αe−αsds = e−αt

In other word, τ has a distribution with a density function f(s) = αe−αs. In this text, we call τ as an
α-exponential time or simply, an exponential time.

Its mean and variance are the following:

E[τ ] =

∫ ∞

0

αse−αsds =
1

α
, V (τ) = E[τ2]− (E[τ ])2 =

1

α2
.

Question 4.1 Make sure the above calculation of variance.

Proposition 4.1 If τ is an exponential time, then it has the following memoryless property. For
t, s ≥ 0,

P (τ > t+ s| τ > s) = P (τ > t).

Proof.

P (τ > t+ s| τ > s) =
P (τ > t+ s)

P (τ > s)
=
e−(t+s)

e−s
= e−t = P (τ > t).

Proposition 4.2 If τ1, τ2, . . . τn are independent α1, α2, . . . , αn-exponential times, respectively, then
min{τ1, τ2, . . . τn} is (α1 + α2 + · · ·+ αn)-exponential time. Moreover,

P (min{τ1, τ2, . . . τn} = τk) =
αk

α1 + α2 + · · ·+ αn
.

Proof. For simplicity, we only show the case of n = 2, k = 1.

P (τ1 ∧ τ2} > t) = P (τ1 > t, τ2 > t) = P (τ1 > t)P (τ2 > t) = e−(α1+α2)t.
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Moreover, since the joint distribution of τ1, τ2 is the product of each ones by their independence, we have

P (min{τ1, τ2} = τ1) = P (τ1 < τ2)

=

∫ ∞

0

dsα1e
−α1sP (s < τ2)

=

∫ ∞

0

dsα1e
−α1se−α2s

=
α1

α1 + α2
.

The other cases are the same.

Example 4.1 There is a system of two devices A and B. The time to failure of A is an 1-exp. time
and the time to failure of B is an 2-exp. time. These are failure independent and the system is failure if
at least one is failure. Find the mean time to failure of the system.

By the previous proposition, the time to failure of the system is a 3-exp. time, and hence, the mean
is 1/3.

4.2 Poisson processes

We describe a Poisson process as a simple example of a continuous-time Markov chain.

Definition 4.2 　For λ > 0, a stochastic process (Xt)t≥0 is a Poisson process with a parameter
λ (it is simply called a λ-Poisson process) if the following holds:

(1) X0 = 0,

(2) For 0 ≤ s < t, Xt −Xs has a Poisson distribution with a parameter λ(t− s), i.e.,

P (Xt −Xs = k) = e−λ(t−s)λ
k(t− s)k

k!
(k = 0, 1, 2, . . . ).

(3) Xt has independent increments. That is, for 0 < t1 < t2 < · · · < tn, Xt1 , Xt2−Xt1 , . . . , Xtn−Xtn−1

are independent.

Theorem 4.1 A Poisson process is a continuous time Markov chain.

It is easy to see by the above independent increments.

Question 4.2 Let S be a countable set. Show in general, if an S-valued continuous-time stochastic
process starting from 0 has independent increments, then it is a continuous-time Markov chain.

Ans. Let Xt be the process satisfies the assumption. For 0 ≤ t1 < t2 < · · · < tn < tn+1, By using
the independence of Xt1 , Xt2 −Xt1 , . . . , Xtn+1

−Xtn , and by a similar way to the discrete-time case, we
can show the independence of Xtn+1

−Xtn , (Xt1 , . . . , Xtn), and of Xtn+1
−Xtn , Xtn . From these we have

Markov property;

P (Xtn+1
= jn+1| Xtk = jk, 0 ≤ k ≤ n) = P (Xtn+1

−Xtn = jn+1 − jn| Xtk = jk, 0 ≤ k ≤ n)

= P (Xtn+1
−Xtn = jn+1 − jn)

= P (Xtn+1
−Xtn = jn+1 − jn| Xtn = jn)

= P (Xtn+1
= jn+1| Xtn = jn).
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Theorem 4.2 (Construction of a Poisson process) Let σ1, σ2, . . . be independent
λ-exponential times. Let τn =

∑n
k=1 σk and τ0 = 0. Define

Xt = n ⇐⇒ τn ≤ t < τn+1, that is, Xt :=

∞∑
n=0

n1[τn,τn+1)(t) = max{n; τn ≤ t}.

Then, (Xt) is a λ-Poisson process.

Note The inverse of the above result holds, that is, if (Xt)t≥0 is a λ-Poisson process and let τ1, τ2, . . .
be jump times of it, then τ1, τ2 − τ1, τ3 − τ2, . . . are i.i.d. and each of them is a λ-exponential time.

In order to show the above result, we use the following.

Proposition 4.3 The sum of independent n-number of λ-exponential times σk; τ =
∑n

k=1 σk is
distributed by the gamma distribution Γ(n, λ), i.e.,

P (τ < t) =

∫ t

0

1

(n− 1)!
λnsn−1e−λsds.

Proof. By the independence of (σn),

P (σ1 + · · ·+ σn < t) =

∫
s1+···sn<t

λne−λ(s1+···sn)ds1 · · · dsn.

By the change of variables such that uk = s1 + · · · sk (k = 1, . . . , n) and s = un,∫
s1+···sn<t

λne−λ(s1+···sn)ds1 · · · dsn =

∫ t

0

dun

∫ un

0

dun−1 · · ·
∫ u2

0

du1λ
ne−λun

=

∫ t

0

dun

∫ un

0

dun−1 · · ·
∫ u3

0

du2u2 λ
ne−λun

=

∫ t

0

dun
1

(n− 1)!
un−1
n λne−λun

=

∫ t

0

ds
1

(n− 1)!
λnsn−1e−λs

[Proof of Theorem 4.2]. Since τn is independent of σn+1 and distributed by Γ(n, λ), we have

P (Xt = n) = P (τn ≤ t < τn+1 = τn + σn+1)

=

∫ t

0

ds
1

(n− 1)!
λnsn−1e−λsP (t < s+ σn+1)

=

∫ t

0

ds
1

(n− 1)!
λnsn−1e−λse−(t−s)λ

= e−λt λn

(n− 1)!

∫ t

0

sn−1ds = e−λtλ
ntn

n!
.

By a similar way,

P (τn+1 > t+ s,Xt = n) = P (τn+1 > t+ s, τn ≤ t < τn+1)

= P (τn + σn+1 > t+ s, τn ≤ t)

=

∫ t

0

du
1

(n− 1)!
λnun−1e−λuP (u+ σn+1 > t+ s)

=

∫ t

0

du
1

(n− 1)!
λnun−1e−λue−λ(t+s−u) = e−λ(t+s)λ

ntn

n!
.
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Hence,

(4.1) P (τn+1 > t+ s| Xt = n) = e−λs = P (σ1 = τ1 > s).

Moreover,
(4.2)

under the condition Xt = n, τn+1 − t, σn+2, . . . , σn+m has the same distribution as σ1, σ2, . . . , σm.

In fact,

P (τn+1 − t > s1, σn+2 > s2, . . . , σn+m > sm| Xt = n)

= P (τn ≤ t < τn+1, τn+1 − t > s1, σn+2 > s2, . . . , σn+m > sm)/P (Xt = n)

= P (τn ≤ t, τn+1 − t > s1)P (σn+2 > s2, . . . , σn+m > sm)/P (Xt = n)

= P (τn+1 − t > s1| Xt = n)P (σ2 > s2, . . . , σm > sm)

= P (σ1 > s)P (σ2 > s2, . . . , σm > sm)

= P (σ1 > s, σ2 > s2, . . . , σm > sm).

By this and noting that τn+m − t = (τn+1 − t) + σn+2 + · · · + τn+m, we have in general, for m ≥ 1, we
can get

P (τn+m > t+ s| Xt = n) = P (τm > s).

By subtracting the above from the above with m+ 1 instead of m, we have

P (τn+m ≤ t+ s < τn+m+1| Xt = n) = P (τm ≤ s < τm+1) = P (Xs = m).

By using this, for n ≥ 0,m ≥ 1,

P (Xt = n,Xt+s −Xt = m) = P (Xt = n,Xt+s = n+m)

= P (Xt = n)P (Xt+s = n+m| Xt = n)

= P (Xt = n)P (τn+m ≤ t+ s < τn+m+1| Xt = n)

= P (Xt = n)P (Xs = m).

By summing on n ≥ 0,

P (Xt+s −Xt = m) = P (Xs = m) = e−λλ
msm

m!
.

In case of m = 0, it can be seen P (Xt+s −Xt = m) = e−λs, and this is included in the above. In fact, by

P (τn > t+ s| Xt = n) = P (τn > t+ s| τn ≤ t < τn+1) = 0,

if we subtract this from (4.1), then

P (Xt+s = n| Xt = n) = P (τn ≤ t+ s < τn+1| Xt = n) = e−λs.

Thus,

P (Xt = n,Xt+s −Xt = 0) = P (Xt = n,Xt+s = n)

= P (Xt = n)P (Xt+s = n| Xt = n)

= P (Xt = n)e−λs.

Hence, by summing on n ≥ 0, we have P (Xt+s −Xt = 0) = e−λs.
Finally on the independence of increments, by using (4.2), we have for 0 ≤ t1 < · · · < tk,

P (Xt0 = n0, Xt1 −Xt0 = n1, . . . , Xtk −Xtk−1
= nk)

= P (Xt0 = n0, Xt1 = n0 + n1, . . . , Xtk = n0 + · · ·+ nk)

= P (Xt0 = n0)P (Xt1−t0 = n1, . . . , Xtk−t0 = n1 + · · ·+ nk).
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Therefore, by repeating this, we have the following independent increments:

P (Xt0 = n0, Xt1 −Xt0 = n1, . . . , Xtk −Xtk−1
= nk)

= P (Xt0 = n0)P (Xt1−t0 = n1) · · ·P (Xtk−tk−1
= nk)

= P (Xt0 = n0)P (Xt1 −Xt0 = n1) · · ·P (Xtk −Xtk−1
= nk).

Example 4.2 The number of times of calling to a fire station is a 20-times per hour Poisson
process, i.e., a 20-Poisson process. In that only 20 percent is urgent. Then, is the number of times of
those requiring urgent a Poisson process? If it is so, then what is the parameter?

The answer is a 4-times per hour Poisson process and it is easily obtained from the following propo-
sition:

Proposition 4.4 Let Xt be a λ-Poisson process. The jumps of Xt has two kinds of type I and
type II. They are independent and each appears with probability p or 1 − p, respectively. Let the process
of jumps of type I only be Yt, and type II only be Zt. Then, they are independent and each is λp or
λ(1− p)-Poisson process, respectively.

Proof. By Xt = Yt + Zt, under Xt = n + k, Yt = k means k-times of jumps are chosen from
n+ k-times with probability p.

P (Yt = k, Zt = n| Xt = n+ k) = P (Yt = k| Xt = n+ k) =

(
n+ k

k

)
pk(1− p)n.

Hence,

P (Yt = k, Zt = n) = P (Yt = k, Zt = n| Xt = n+ k)P (Xt = n+ k)

=

(
n+ k

k

)
pk(1− p)ne−λt (λt)

n+k

(n+ k)!

= e−λpt (λpt)
k

k!
e−λ(1−p)t (λ(1− p)t)n

n!
.

Question 4.3 Check the last equation.

By summing in n ≥ 0 on both sides, we have

P (Yt = k) = e−λpt (λpt)
k

k!
.

Similarly, by summing in k ≥ 0,

P (Zt = n) = e−λ(1−p)t (λ(1− p)t)n

n!
.

Moreover, by the above three equations, we have

P (Yt = k, Zt = n) = P (Yt = k)P (Zt = n).

Therefore, Yt, Zt are independent and each has λp or λ(1 − p)-Poisson distribution. For Yt − Ys, by a
similar way to the above, we have

P (Yt+s − Ys = k) =
∑
n≥0

P (Yt+s − Ys = k| Xt+s −Xs = n+ k)P (Xt+s −Xs = n+ k)

=
∑
n≥0

(
n+ k

k

)
pk(1− p)ne−λt (λt)

n+k

(n+ k)!

= e−λpt (λpt)
k

k!
.
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Thus, P (Yt+s − Ys = k) = P (Yt = k). Furthermore, by the same way we can show

P (Ys = k1, Yt+s − Ys = k2, Zs = n1, Zt+s − Zs = n2)(4.3)

= P (Ys = k1)P (Yt+s − Ys = k2)P (Zs = n1)P (Zt+s − Zs = n2).

(Make condition by {Xs = k1 + n1, Xt+s −Xs = k2 + n2} and use the independence of them.) Hence we
have the independent increments of (Yt), (Zt), respectively, and (Yt) is a λp-Poisson process and (Zt) is
a λ(1− p)-Poisson process. Moreover, it is easy to see that

P (Ys = k1, Yt+s = k1 + k2, Zs = n1, Zt+s = n1 + n2)(4.4)

= P (Ys = k1, Yt+s = k1 + k2)P (Zs = n1, Zt+s = n1 + n2)

and hence, {Ys, Ys+t} and と {Zs, Zs+t} are independent and more general, we have for 0 ≤ t1 < t2 <
· · · < tm, {Yt1 , . . . , Ytn} and {Zt1 , . . . , Ztn} are independent. This means independence of (Yt), (Zt) as
processes.

Question 4.4 Show (4.3) in the above proof, and show (4.4) from this.

4.3 Continuous-time random walks

Let S be a countable linear space. Let (pj)j∈S be a distribution. A stochastic process (Xt)t≥0 which
jumps from i ∈ S to i + j with probability pj in each independent 1-exponential times is called a
continuous-time random walk.

This is constructed as Xt := YSt
by using a discrete-time RW (Yn)n≥0 with one-step distribution (pj)

and a 1-Poisson process (St) and it is independent of (Yn).
Since (Yn) and (St) have independent increments, (Xt)also has independent increments. Hence, by

Question 4.2 it is a continuous-time Markov chain.

4.4 Continuous-time Galton-Watson processes

Let λ > 0. There are several particles and each divides independently into k ≥ 0 particles (if k = 0,
then it exterminates) with probability pk after λ-exponential time. Each divided particles divides or
exterminates independently under the same law. Then, at the time t, we denote the total number of
particles as Zt and it is called a continuous-time Galton-Watson process.

This is constructed as follows: Let {Xn} be a discrete-time GW-process with offspring probability
(pk), and {St} be an independent λ-Poisson process, and set Zt := XSt

.
The mean of offspring number is

m :=
∑
k≥1

kpk.

Theorem 4.3 Let 0 < p0 + p1 < 1.

P (∀t ≥ 0, Zt ≥ 1) > 0 ⇐⇒ m > 1.

Moreover, for t ≥ 0, E[Zt| Z0 = 1] = eλ(m−1)t.

Proof. By the result of the discrete-time case and by the above construction, the first half is easily
obtained. We consider the expectation. Let E1[∗] := E[∗| Z0 = 1]. By Zt = XSt

と E1[Xn] = mn,

E1[Zt] =

∞∑
n=0

E1[Zt| St = n]P1(St = n) =

∞∑
n=0

E1[Xn| St = n]P (St = n)

=

∞∑
n=0

E1[Xn]P (St = n) =

∞∑
n=0

mne−λt (λt)
n

n!
= eλ(m−1)t
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4.5 Continuous-time Markov chains & transition probabilities

Let S be a countable set. An S-valued continuous Markov chain (Xt)t≥0 can be defined by the same
way as a continuous-time RW. That is, Xt := YSt

, where (Yn)n≥0 is a discrete time Markov chain with
transition probability p(i, j) and (St)t≥0 is a 1-Poisson process and independent of (Yn).

s, t ≥ 0, i, j, kuℓ
∈ S (0 ≤ uℓ < s) (ℓ ≤ ℓ0) に対し,

P (Xt+s = j| Xs = i,Xuℓ
= kuℓ

(ℓ ≤ ℓ0)) = P (Xt = j| X0 = i) =: qt(i, j).

Moreover, qt(i, j) can be obtained by using an n-th transition probability pn(i, j) as follows;

qt(i, j) =
∑
n≥0

e−t t
n

n!
pn(i, j).

[Proof of that Xt := YSt
is a Markov chain] For simplicity, let the RHS of the above be q̃t(i, j)

and we show the Markov property in case of ℓ0 = 1 only. Let u < s, ℓ ≤ n. We first show

(4.5) P

(
Xt+s = j

∣∣∣∣ Xs = i

Ss = n
,
Xu = k

Su = ℓ

)
= P

(
Xt+s = j

∣∣∣∣ Xs = i

Ss = n

)
= q̃t(i, j).

The independence of (Yn), (St), the Markov property of (Yn) and independent increments of (St) imply

P

(
Xt+s = j

∣∣∣∣ Xs = i

Ss = n
,
Xu = k

Su = ℓ

)
=

∑
m≥0

P

(
Xt+s = j, St+s = n+m

∣∣∣∣ Xs = i,

Ss = n
,
Xu = k,

Su = ℓ

)

=
∑
m≥0

P

(
Yn+m = j, St+s − Ss = m

∣∣∣∣ Yn = i,

Ss = n
,
Yℓ = k,

Su = ℓ

)
=

∑
m≥0

P (Yn+m = j, Yn = i, Yℓ = k)P (St+s − Ss = m)P (Ss = n, Su = ℓ)

P (Yn = i, Yℓ = k)P (Ss = n, Su = ℓ)

=
∑
m≥0

P (Yn+m = j| Yn = i, Yℓ = k)P (St+s − Ss = m)

=
∑
m≥0

P (Ym = j| Y0 = i)P (St = m) = q̃t(i, j).

On the other hand, by a similar way we have

P (Xt+s = j| Xs = i, Ss = n) =
∑
m≥0

P (Xt+s = j, St+s − Ss = m| Xs = i, Ss = n)

=
∑
m≥0

P (Yn+m = j, Yn = i)P (St+s − Ss = m)P (Ss = n)

P (Yn = i)P (Ss = n)

=
∑
m≥0

P (Yn+m = j| Yn = i)P (St = m) = q̃t(i, j).

Hence we have (4.5). The last term q̃t(i, j) is independent of ℓ ≤ n, k ∈ S, u < s, and events of the
condition are mutually disjoint in ℓ ≤ n. Thus, by summing on ℓ ≤ n, we have the same result. Therefore
we have the time-homogeneous Markov property;

P (Xt+s = j| Xs = i,Xu = k) = P (Xt+s = j| Xs = i) = q̃t(i, j).

Moreover, we have the transition probability

qt(i, j) = P (Xt = j| X0 = i) = q̃t(i, j).
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Proposition 4.5 (Chapman-Kolmogorov equation) qt+s(i, j) =
∑
k∈S

qt(i, k)qs(k, j).

Proof.

[RHS] =
∑
k∈S

P (Xt = k| X0 = i)P (Xt+s = j| Xt = k)

=
∑
k∈S

P (Xt = k| X0 = i)P (Xt+s = j| Xt = k,X0 = i)

=
∑
k∈S

P (Xt+s = j,Xt = k,X0 = i)

P (X0 = i)

=
P (Xt+s = j,X0 = i)

P (X0 = i)
= P (Xt+s = j| X0 = i) = [LHS]

Proposition 4.6 Let Yn be a discrete-time birth and death chain on Z+ with a birth rate λi, a death
rate µi (i ∈ Z+. The transition probability qh(i, j) of a continuous-time birth and death chain Xt = YZt

satisfies the following: (Note that µ0 = 0, λi > 0, and if i ≥ 1, then µi > 0.)

qh(i, i+ 1) = λih+ o(h)

qh(i, i− 1) = µih+ o(h) (i ≥ 1)

qh(i, i) = 1− (λi + µi)h+ o(h)

q0(i, j) = δij .

In particular, lim
h→0

qh(i, i) = 1. Note that qh(0,−1) = 0, qh(0, 0) = 1.

Proof. Let pn(i, j) be an n-th transition probability of Yn. The transition probability qh(i, j) satisfies
the following as h→ 0;

qh(i, j) =
∑
n≥0

e−hh
n

n!
pn(i, j)

= e−h
(
δij + hp(i, j) +O(h2)

)
= δij + hp(i, j) +O(h2).

Moreover, by noting that

p(i, i+ 1) = λi, p(i, i− 1) = µi, p(i, i) = 1− (λi + µi)

the result is easily obtained.

In general, let (Xt) be an S-valued time-homogeneous Markov chain. For a suitable function f : S →
R, let

Gf(i) = lim
h→0

1

h

(
Ei[f(Xt)]− f(i)

)
= lim

h→0

1

h
Ei[f(Xt)− f(X0)],

where Ei[·] = E[·| X0 = i]. Then G is called a generator of (Xt).

Theorem 4.4 In the above birth and death chain, for a bounded function f : Z+ → R,

Gf(i) = λif(i+ 1) + µif(i− 1)− (λi + µi)f(i).

Moreover,

Ei[f(Xt)− f(X0)] =

∫ t

0

Ei[Gf(Xs)]ds.
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Proof. For sufficiently small h > 0,

Ei[f(Xh)] = f(i+ 1)qh(i, i+ 1) + f(i− 1)qh(i, i− 1) + f(i)qh(i, i) + o(h)

= f(i) + h [λif(i+ 1) + µif(i− 1)− (λi + µi)f(i)] + o(h)

Hence Gf(i) is obtained. Moreover, by Markov property,

Ei[f(Xt)− f(X0)] =

∫ t

0

lim
h→0

1

h
Ei[f(Xs+h)− f(Xs)]ds

=

∫ t

0

lim
h→0

1

h
Ei

[
EXs [f(Xh)− f(X0)]

]
ds

=

∫ t

0

Ei

[
lim
h→0

1

h
EXs [f(Xh)− f(X0)]

]
ds

=

∫ t

0

Ei [Gf(Xs)] ds.

Note that it is possible to exchange limh→0 and Ei in the above, because by the boundedness of f and
0 < λi, µi < 1 we can apply Lebesgue’s convergence theorem.

The above result means f(i) changes to f(i+1) at rate λi, to f(i− 1) at rate µi and does not change
at rate 1−λi−µi. Therefore, if the generator G is known, then the Markov process (Xt) is known. That
is, G and (Xt) is one-to-one onto.

On a more general state space S the generator is a very important tool in the theory of Markov
processes.
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