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1 Bases of Probability Theory

Probability theory is based on measure theory and Lebesgue integrals. However, in this text, we do not
assume the readers have enough knowledge on measure theory and Lebesgue integrals.

1.1 Probability spaces and random variables

In the probability theory we investigate various properties of random variables X = X(ω) which are
defined on an appropriate probability space (Ω,F , P ).

Here the probability space (Ω,F , P ) is that

� Ω is a (non-empty) set; ω ∈ Ω.

� F (⊂ 2Ω) is a σ-additive class (σ-field) on Ω. (2Ω is a total family of subsets of Ω. That is, it
satisfies the following:

(1) Ω ∈ F
(2) A ∈ F ⇒ Ac ∈ F
(3) An ∈ F (n = 1, 2, . . . ) ⇒

⋃
An ∈ F

� P = P (dω) is a probability measure on a measurable space (Ω,F), i.e., P : F → [0, 1] is a set
function such that

(1) P (Ω) = 1

(2) An ∈ F (n = 1, 2, . . . ) are mutually disjoint ⇒ P (
⋃
An) =

∑
P (An) (σ-additivity)

Question 1.1 Let (Ω,F , P ) be a probability space. Show the following hold:

(1) σ-add. class is closed under operations of a countable number of sets, i.e., if F is a σ-add. class,
then for A,B,An ∈ F , the following are also in F .

∅, A ∩B, A \B, A4B := (A \B) ∪ (B \A),
∞⋂

n=1

An.

We also have limAn = lim supAn :=
⋂
N≥1

⋃
n≥N

An, limAn = lim inf An :=
⋃
N≥1

⋂
n≥N

An ∈ F , where

you may remember as lim = inf sup, lim = sup inf.

Note that we simply denote limAn as An i.o. (= infinitely often), limAn as An e.f. (= except
finite),

(2) P (∅) = 0, Ak ∈ F (k = 1, 2, . . . , n) are mutually disjoint ⇒ P (
⋃n

k=1Ak) =
∑n

k=1 P (Ak) (finite
additivity).

(3) A,B ∈ F ;A ⊂ B ⇒ P (A) ≤ P (B) (monotonicity).

(4) An ∈ F , An ↑ ⇒ P
(⋃

An

)
= lim

n→∞
P (An).

(5) An ∈ F , An ↓ ⇒ P
(⋂

An

)
= lim

n→∞
P (An).

(4), (5) are called the monotone continuity of the probability

(6) An ∈ F (n ≥ 1) ⇒ P
(⋃

An

)
≤
∑

P (An) (σ-sub additivity).

(7) (Borel-Cantelli’s lemma) An ∈ F (n ≥ 1),
∑
P (An) < ∞ ⇒ P

(
lim sup
n→∞

An

)
= 0, i.e.,

P
(
lim inf
n→∞

Ac
n

)
= 1.
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Ans. (1) ∅ = Ωc, A ∩B = (Ac ∪Bc)c, A \B = A ∩Bc, by def., and by de Morgan’s law.
(2) By σ-additivity, P (∅) = ∞ · P (∅). Ak = ∅ for k > n. (3) B = A ∪ (B \A).

(4) Bn = An \An−1 with A0 = ∅ and
∑
n≥1

= lim
N→∞

N∑
n=1

. (5) complement. (6) Bn = An \

(
n−1∪
k=1

Ak

)
.

(7)
∪

n≥N

An ↓ lim supAn and by monotone continuity, σ-sub additivity and def. of infinite sum.

On this probability space (Ω,F , P ) a function X = X(ω) : Ω → R is called a random variable if
{X ≤ a} := {ω ∈ Ω;X(ω) ≤ a} ∈ F (∀a ∈ R). Especially, if X takes in a countable set S = {aj}j≥1 ⊂ R,
then the above condition is equivalent to {X = aj} ∈ F (∀j ≥ 1).

Let Xk be a real-valued random variable on (Ω,F , P ) for k = 1, 2, . . . , n. {Xk}nk=1 is independent if

P (X1 ≤ a1, · · · , Xn ≤ an) = P (X1 ≤ a1) · · ·P (Xn ≤ an) (∀ak ∈ R, k = 1, . . . , n).

Moreover, in case of n = ∞, {Xk}k≥1 is independent if ∀N ≥ 1, {Xk}Nk=1 is independent. Especially, if
Xk takes in S = {aj}j≥1, then the above condition is equivalent to

P (X1 = b1, · · · , Xn = bn) = P (X1 = b1) · · ·P (Xn = bn) (bk ∈ S, k = 1, . . . , n).

Furthermore, µX(A) = P (X ∈ A) is called a distribution of X, and F (x) = P (X ≤ x) is called
distribution function of X.

1.2 Expectations, means

The expectation or means of a random variable X on a prob. sp. (Ω,F , P ) is defined as a Lebesgue
integral by the probability measure P ;

EX = E[X] :=

∫
XdP =

∫
Ω

X(ω)P (dω)

However, here, we give how to define EX for X which is Z := Z ∪ {±∞}-valued.

(1) If X ≥ 0, then

EX :=

∞∑
n=0

nP (X = n) +∞ · P (X = ∞).

(If P (X = ∞) = 0, then ∞ · P (X = ∞) = 0. If P (X = ∞) > 0, then EX = ∞.)

(2) If X is in general, then let X+ := X ∨ 0, X− := (−X)∨ 0, (X± ≥ 0, X = X+−X− hold → show.)
and set EX := EX+ − EX− except the case of ∞−∞.

Formally, we denote EX =
∑
n∈Z

nP (X = n). Moreover, for a function f : Z → R,

Ef(X) =
∑
n∈Z

f(n)P (X = n). (Of course, it can be defined by dividing to
∑

n;f(n)>0

and
∑

n;f(n)<0

if at

least one is finite.)
For a RV X, a variance is defined by V (X) := E[(X − EX)2] = E[X2] − (EX)2 (show the last

equal). From this, we have (EX)2 ≤ E[X2].

Theorem 1.1 (Chebyshev’s inequality) Let p ≥ 1. For ∀a > 0,

P (|X| ≥ a) ≤ E[|X|p]
ap

.

Proof. Since P (|X| ≥ a) = P (|X|p ≥ ap), we may set p = 1.

E|X| =
∑
n≥1

nP (|X| = n) ≥
∑
n≥a

nP (|X| = n) ≥ a
∑
n≥a

P (|X| = n) = aP (|X| ≥ a).
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More generally, (by using Lebesgue integrals)

E|X| =
∫
Ω

|X|dP ≥
∫
{|X|≥a}

|X|dP ≥ aP (|X| ≥ a).

Theorem 1.2 Let X1, . . . , Xn be Z-valued RVs such that E[X2
k ] <∞ (k = 1, . . . , n). If X1, . . . , Xn

are independent, then E[XjXk] = E[Xj ]E[Xk] (j 6= k). Moreover, if E[Xk] = 0, then

E

( n∑
k=1

Xk

)2
 =

n∑
k=1

E[X2
k ].

Proof. (1) If j 6= k, then by the independence P (Xj = m,Xk = n) = P (Xj = m)P (Xk = n). and
this implies

E[XjXk] =
∑
m,n

mnP (Xj = m,Xk = n) =
∑
m,n

mnP (Xj = m)P (Xk = n) = E[Xj ]E[Xk].

(2) By

(
n∑

k=1

Xk

)2

=

n∑
k=1

X2
k +

∑
j ̸=k

XjXk and by (1), if j 6= k, then E[XjXk] = E[Xj ]E[Xk] = 0, and

the result is clear.

1.3 LLN=Law of Large Numbers

In the coin tossing, the rate of the heads of the coin appear goes to 1/2 as the times of tossing increases,
This is a typical example satisfying LLN.

In order to treat in mathematics, In the tossing the coin n-th time, if the head appears, then set
Xn = 1, if the tail appears, then set Xn = 0. In this case, the probabilistic mean is EXn = 1/2 (and the

variance is V (Xn) = 1/4) and the arithmetic mean is
1

n

n∑
k=1

Xk. The LLN is that this mean “converges”

to the probabilistic mean 1/2 as n→ ∞.

Theorem 1.3 (Weak Law of Large Numbers) Let X1, X2, . . . be independent RVs with con-
stant means EXn = m，and bounded variances v := supn V (Xn) <∞. It holds that for ∀ε > 0,

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑

k=1

Xk −m

∣∣∣∣∣ ≥ ε

)
= 0, i.e., lim

n→∞
P

(∣∣∣∣∣ 1n
n∑

k=1

Xk −m

∣∣∣∣∣ < ε

)
= 1.

Proof. Since {Xn} are independent, {X̃n = Xn −m} are so, too (make sure). Hence, by

1

n

n∑
k=1

Xk −m =
1

n

n∑
k=1

(Xk −m)

and by considering X̃n instead of Xn, we may set m = 0, i.e., E[Xn] = 0. Then V (Xn) = E[X2
n] and by

the previous proposition, we have

E

( n∑
k=1

Xk

)2
 =

n∑
k=1

E[X2
k ] =

n∑
k=1

V (Xk) ≤ n sup
n
V (Xn) = nv.

Therefore, for ∀ε > 0,

P

(∣∣∣∣∣ 1n
n∑

k=1

Xk

∣∣∣∣∣ ≥ ε

)
= P

(∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣ ≥ εn

)
≤
E[(
∑n

k=1Xk)
2
]

ε2n2

≤ nv

ε2n2
=

v

ε2n
→ 0 (n→ ∞).
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Under the same conditions as above, the strong result holds. it is the following theorem:

Theorem 1.4 (Strong Law of Large Numbers) Let X1, X2, . . . be independent RVs with con-
stant means EXn = m，and bounded variances v := supn V (Xn) <∞. It holds that

P

(
lim

n→∞

1

n

n∑
k=1

Xk = m

)
= 1.

Remark 1.1 In general, in case of non-constant means, it holds that

P

(
lim
n→∞

1

n

n∑
k=1

(Xk − EXk) = 0

)
= 1.

We give the proof in the next subsection. However, under the stronger condition, we can show it
easily.

[Under supE[X4
n] < ∞, proof of Theorem 1.4] By considering Xn −m instead of Xn, we may

set m = 0, i.e., E[Xn] = 0. We consider the expansion of

(
n∑

k=1

Xk

)4

. By the independence and mean 0,

and by noting that E[X2] ≤ (E[X4])1/2, we have

E

( n∑
k=1

Xk

)4
 =

n∑
k=1

E[X4
k ] +

∑
i ̸=j,1≤i,j≤n

E[X2
i ]E[X2

j ] ≤ n2 sup
k
E[X4

k ].

Hence, by monotone convergence theorem or by Fubini’s theorem, we get

E

 ∞∑
n=1

(
1

n

n∑
k=1

Xk

)4
 =

∞∑
n=1

1

n4
E

( n∑
k=1

Xk

)4
 ≤

∞∑
n=1

1

n2
sup
k
E[X4

k ] <∞.

This implies P

(
lim

n→∞

1

n

n∑
k=1

Xk = 0

)
= 1.

More important result is the following Central Limit Theorem (CLT).

Theorem 1.5 (CLT) Let {Xn} be independent identically distributed = i.i.d.) RVs. Set EX1 = m

and V (X1) = v. Then the distribution of
1√
n

n∑
k=1

(Xk −m) converges to the normal distribution with

mean 0 and variance v, i.e., for all a < b,

lim
n→∞

P

(
a <

1√
n

n∑
k=1

(Xk −m) ≤ b

)
=

1√
2πv

∫ b

a

e−
x2

2v dx.

In another words, the distribution of
1√
nv

n∑
k=1

(Xk −m) converges to the normal distribution N(0, 1) with

mean 0 and variance 1.

Here, we describe on the relations of independence and distributions. Let B1 = B(R1) be a 1-
dimensional Borel-field. For real-valued RVs X1, . . . , Xn, set X = (X1, . . . , Xn) and define the joint
distribution by µX (A1 × · · · × An) = P (X1 ∈ A1, . . . , Xn ∈ An) (Ai ∈ B1).
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Theorem 1.6 If real-valued RVs X1, . . . , Xn are indep., then for X = (X1, . . . , Xn),

µX =

n⊗
i=1

µXi
i.e., µX (A1 × · · · × An) = µX1

(A1) · · ·µXn
(An).

This is easily seen by that the σ-add. class generated by the family of all half-lines (−∞, a] is B1.

Theorem 1.7 If real-valued RVs X,Y are indep., then for a bounded Borel function f(x, y),

E[f(X,Y )] = E [E[f(x, Y )]|x=X ] = E [E[f(X, y)]|y=Y ] .

This is the same as ∫
R2

f(x, y)µ(X,Y )(dx, dy) =

∫
R2

f(x, y)µX(dx)µY (dy)

and it is clear by the above result.

Example 1.1 If X,Y are indep., then

P (X < Y ) =

∫
R

P (x < Y )µX(dx).

1.4 Proof of LLN

We describe two convergence notions.
Let Xn, X be RVs.
Xn → X in pr., i.e., Xn converge to X in probability if for ∀ε > 0, P (|Xn −X| ≥ ε) → 0 (n→ ∞).
Xn → X, P -a.s., i.e., Xn converges to X almost surely if P (Xn → X) = 1.

Question 1.2 　 Show Xn → X, P -a.s. =⇒ Xn → X in pr.

Hint. P (Xn → X) = 1 ⇐⇒

P

⋂
k≥1

⋃
N≥1

⋂
n≥N

{
|Xn −X| < 1

k

} = 1 ⇐⇒ P

⋃
k≥1

⋂
N≥1

⋃
n≥N

{
|Xn −X| ≥ 1

k

} = 0

⇐⇒ ∀k ≥ 1, lim
N→∞

P

 ⋃
n≥N

{
|Xn −X| ≥ 1

k

} = P

 ⋂
N≥1

⋃
n≥N

{
|Xn −X| ≥ 1

k

} = 0

=⇒ ∀k ≥ 1, lim
N→∞

P

(
|XN −X| ≥ 1

k

)
≤ lim

N→∞
P

 ⋃
n≥N

{
|Xn −X| ≥ 1

k

} = 0

This is equivalent to to the convergence in prob. (That is, it is possible to change 1/k to ε > 0. Why?

Remark 1.2 　 In general, the inverse of the above question does not hold. That is, it is possible to
make an example which converges in probability, however, which does not converge a.s.

Question 1.3 Show the following: If a sequence of RV’s converges in pr., then there exists a suitable
sub-sequence which converges a.s., i.e., “Xn → X in pr. ⇒ ∃{nk};Xnk

→ X a.s.”

Hint. We can see that ∃{nk}; P
(
|Xnk

−X| ≥ 1

2k

)
≤ 1

2k
. Since the sum converges, we can use Borel-

Cantelli’s lemma and we have P

 ⋃
N≥1

⋂
k≥N

{
|Xnk

−X| < 1

2k

} = 1. the result is easily obtained.)

Now we proceed the subject of strong law of large numbers. We describe the theorem again.
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Theorem 1.8 (Strong Law of Large Numbers) Let X1, X2, . . . be independent random vari-
ables and have constant means; EXn = m，and bounded variances; v := supn V (Xn) < ∞. Then,
the following holds:

P

(
lim

n→∞

1

n

n∑
k=1

Xk = m

)
= 1.

[Outline of the proof] We may set EXn = 0. Let Sn =

n∑
k=1

(Xk/k).

(1) By Kolmogorov’s maximal inequality, supk≥n |Sk − Sn| → 0 (n→ ∞) in pr.

(2) By the result of “Convergence in pr. implies convergence a.s. of a suitable sub-sequence”, we have
{Sn} is a Cauchy sequence a.s., thus, it converges a.s.

(3) By Kronecker’s Lemma,
1

n

n∑
k=1

Xk → 0 P -a.s.

Lemma 1.1 (Kronecker’s lemma) For a numerical sequences {xn}, {an}; 0 < an ↑ ∞,

lim
n→∞

n∑
k=1

xk
ak

exists =⇒ lim
n→∞

1

an

n∑
k=1

xk = 0

Proof. Set s0 = 0 and sn =

n∑
k=1

(xk/ak) → s. Since

1

an

n∑
k=1

xk =

n∑
k=1

ak
an

xk
ak

=

n∑
k=1

ak
an

(sk − sk−1) = sn −
n−1∑
k=1

ak+1 − ak
an

sk,

the result is reduced to

sn → s ⇒ 1

an

n−1∑
k=1

(ak+1 − ak)sk → s

s∗ = supm |sm| < ∞ and ∀ε > 0, ∃N ; ∀k ≥ N, |sk − s| < ε imply that for n > N , dividing the sum at
N , we have ∣∣∣∣∣ 1an

n−1∑
k=1

(ak+1 − ak)sk − s

∣∣∣∣∣
(
by s =

1

an

n−1∑
k=N

(ak+1 − ak)s+
aN
an
s we have

)

≤ 1

an

n−1∑
k=N

(ak+1 − ak)|sk − s|+ 1

an

N−1∑
k=1

(ak+1 − ak)(sup
m

|sm|) + aN
an

|s|

≤ ε
an − aN
an

+ s∗
aN − a1
an

+
aN
an

|s|

→ ε (n→ ∞).

Hence, ε > 0 is arbitrary, the limit is 0.

Lemma 1.2 (Kolmogorov’s maximal inequality) Let {Xn} be independent RVs with means

EXn = 0. For Sn =

n∑
k=1

Xn, it holds that

a > 0 =⇒ a2P ( max
1≤n≤N

|Sn| ≥ a) ≤ E[|SN |2; max
1≤n≤N

|Sn| ≥ a] ≤ E[|SN |2]
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Proof. Let Ak = {|Sk| ≥ a, |S1| < a, . . . , |Sk−1| < a}, and S(k+1) = Xk+1 + · · ·+XN . Then, S(k+1)

andSk1Ak
are independent, and E[SkS

(k+1);Ak] = E[Sk1Ak
]E[S(k+1)] = 0. A =

N⋃
k=1

Ak (disjoint union).

E[|SN |2; max
1≤n≤N

|Sn| ≥ a] =

N∑
k=1

E[(Sk + S(k+1))2;Ak]

=

N∑
k=1

E[S2
k + 2SkS

(k+1) + (S(k+1))2;Ak]

≥
N∑

k=1

E[S2
k;Ak]

≥
N∑

k=1

a2P (Ak) (by |Sk| ≥ a on Ak)

= a2P ( max
1≤n≤N

|Sn| ≥ a)

[Proof of String Law of Large Numbers (Theorem 1.4)] We may assume EXn = 0. Because by

considering X̃n = Xn −EXn instead of Xn, {X̃n} are independent and V (X̃n) = V (Xn) ≤ v. Moreover,

we have E[XnXm] = E[Xn]E[Xm] = 0 (m 6= n) and E[X2
n] = V (Xn) ≤ v. Let Sn =

n∑
k=1

Xk

k
. By

Kolmogorov’s maximal inequality, for all a > 0,

a2P ( max
n<k≤N

|Sk − Sn| ≥ a) ≤ E[|SN − Sn|2] =
N∑

k=n+1

E[X2
k ]

k2
≤
∑
k>n

v

k2
.

As N → ∞ and n→ ∞, we have

lim
n→∞

P (sup
k>n

|Sk − Sn| ≥ a) = 0, i.e., supk>n |Sk − Sn| → 0 (n→ ∞) in pr.

Hence, for a suitable subsequence {nj} ⊂ N;nj ↑ ∞,

lim
j→∞

sup
k≥nj

|Sk − Snj
| = 0 P -a.s.

Thus, if n,m ≥ nj , then |Sn − Sm| ≤ |Sn − Snj | + |Sm − Snj | → 0 (j → ∞) P -a.s., that is, {Sn} is

a Cauchy sequence a.s. Thus, lim
n→∞

n∑
k=1

Xk

k
= lim

n→∞
Sn exists a.s. Therefore, by Kronecker’s lemma, we

have lim
n→∞

1

n

n∑
k=1

Xk = 0 a.s.

From the above proof we have

Corollary 1.1 Let {Xn} be independent random variables with mean 0. If

∞∑
k=1

V (Xk) <∞, then

the limit lim
n→∞

n∑
k=1

Xk exists with probability one.

Corollary 1.2 Under the same conditions as in the strong LLN, for arbitrary δ > 0, the following
holds

lim
n→∞

1√
n1+δ

n∑
k=1

(Xk − EXk) = 0 P -a.s.
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In the proof of LLN, it is enough to consider

n∑
k=1

(Xk/
√
k1+δ) instead of Sn.

Now, if we let δ be 0 in the above, then what is the result?
The answer of this question is Central Limit Theorem (CLT). In the proof we use characteristic

functions which are Fourier transforms of probability measures. Moreover, we use the result such that
the convergence of characteristic functions implies convergence of distributions.

1.5 Characteristic functions & convergence of distributions

For a RV X, the following function φ = φX : R1 → C is called a characteristic function of X;

φ(z) = φX(z) := E
[
eizX

]
(z ∈ R1).

For a distribution of X; µ(A) = µX(A) := P (X ∈ A), it is also expressed as

φ(z) =

∫
R

eizxµ(dx)

On the other hand, if µ is a probability measure on R1 (which is simply called a “distribution”), then
the above φ(z) is called a characteristic function of µ.

We first give the definition of normal distributions.
A distribution µ(dx) = g(x)dx on R with

g(x) =
1√
2πv

exp

[
− (x−m)2

2v

]
is called a normal distribution or Gaussian distribution with mean m, variance v, and it is denoted
as N(m, v) (this notion is also used as a random variable with the normal distribution).

The characteristic function of this distribution is given as

φ(z) =

∫ ∞

−∞
eizx

1√
2πv

exp

[
− (x−m)2

2v

]
dx = exp

[
imz − vz2

2

]
.

Question 1.4 Make sure the above calculation.

Tent functions: Let T (x) be a function on R such that it has a graph which connected three points
of (−1, 0), (0, 1), (1, 0) in a segment of a line, and that it is 0 outside of (−1, 1), i.e.,

T (x) =
1

2
(|x+ 1|+ |x− 1| − 2|x|).

This is called a tent function on an interval (−1, 1) with a height 1. Moreover, for −∞ < a < b <
∞, h > 0, we define a tent function on an interval (a, b) with a height h as

Ta,b;h(x) = hT

(
2

b− a

(
x− a+ b

2

))
Furthermore, for h > 1, we define a trapezoid function Da,b;h as

Da,b;h(x) := (Ta,b;h ∧ 1)(x) = min{Ta,b;h(x), 1} = Ta,b;h(x)− Ta+(b−a)/(2h),b−(b−a)/(2h);h−1(x).

This tent function appears in the following distribution:

Question 1.5 Let U, V be independent RVs with the same uniform distribution on [0, a] (a > 0). Show
the density function of X = U − V is T−a,a;1/a. Show the characteristic function is given as

φX(z) =
2(1− cos az)

a2z2
.
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Hint. It is enough to show that For any bounded Borel functions f ,

E[f(X)] =

∫ a

−a

f(x)T−a,a;1/a(x)dx

In that use the joint dist. of (U, V ) is the product of each distributions by their independence. That is,

P (U ∈ du, V ∈ dv) = P (U ∈ du)P (V ∈ dv) =
1

a
1[0,a](u)du

1

a
1[0,a](v)dv.

By this the above calculus is reduced to

1

a2

∫
R

1[0,a](v)1[0,a](x+ v)dv = T−a,a;1/a(x)

On the later half, use that the characteristic function of X is a product of each c.f.’s of U,−V .

Proposition 1.1 For a characteristic function φ(z) of a RV X, it holds that

E[T (X)] =
1

π

∫ ∞

−∞
φ(z)

1− cos z

z2
dz,

E[Ta,b;h(X)] =
2h

π(b− a)

∫ ∞

−∞
φ(z)e−i(a+b)z/2 1− cos (b−a)z

2

z2
dz.

Proof. By the previous question,∫ ∞

−∞
eizxT (x)dx =

2(1− cos z)

z2
.

Moreover, it is can be seen that

(1.1)

∫ ∞

−∞
eizx

1− cos z

z2
dz = πT (x).

If we admit this result, then by substituting X for x and taking expectation, and by Fubini’s Theorem,
we have

E[T (X)] =
1

π
E

[∫ ∞

−∞
eizX

1− cos z

z2
dz

]
=

1

π

∫ ∞

−∞
φX(z)

1− cos z

z2
dz.

On E[Ta,b;h(X)], it is easy to get by a change of variables. Finally, we show (1.1). Since (1− cos z)/z2 is
an even function and

cos zx(1− cos z) = cos zx− 1

2
(cos z(x+ 1) + cos z(x− 1))

and by a change of variables, the left-hand of (1.1) is∫ ∞

−∞
cos zx

1− cos z

z2
dz =

1

2

∫ ∞

−∞

1− cos z(x+ 1)

z2
dz +

1

2

∫ ∞

−∞

1− cos z(x− 1)

z2
dz

−
∫ ∞

−∞

1− cos zx

z2
dz

=

∫ ∞

−∞

1− cos z

z2
dz

(
1

2
(|x+ 1|+ |x− 1|)− |x|

)
.

From this and by the equation

∫ ∞

−∞

1− cos z

z2
dz = π, we have (1.1).
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Question 1.6 　 (i) Find I(t) =

∫ ∞

0

e−tz sin zdz (t > 0) by using integration by parts.

1/(1 + t2)

(ii) Show the equation

∫ ∞

0

I(t)dt =

∫ ∞

0

sin z

z
dz, and find the integral. π/2

(iii) By using integration by parts, show

∫ ∞

−∞

1− cos z

z2
dz = π.

RVs X,Y are identically distributed means for all a ∈ R, P (X > a) = P (Y > a). We denote by

X
(d)
= Y (which means X = Y in the sense of distribution).

Theorem 1.9 For characteristic functions φX , φY of RVs X,Y , if φX(z) = φY (z) (z ∈ R), then

X
(d)
= Y .

Proof. By the assumption and the previous proposition, for any tent function Ta,b;h, it holds
E[Ta,b;h(X)] = E[Ta,b;h(Y )]. Thus, for all trapezoid function Da,b;h, E[Da,b;h(X)] = E[Da,b;h(Y )].
Hence, noting that lim

h→∞
Da,b;h(x) = I(a,b)(x), by Lebesgue’s convergence theorem, P (a < X < b) =

P (a < Y < b). Therefore, we have X
(d)
= Y .

Theorem 1.10 Let X, {Xn} be RVs and let φ(z), {φn(z)} be their characteristic functions. If

lim
n→∞

φn(z) = φ(z) (z ∈ R1) [pointwise],

then for all a ∈ R;P (X = a) = 0, lim
n→∞

P (Xn > a) = P (X > a).

Proof. By the assumption and |φn(z)| ≤ 1, and by Lebesgue’s convergence theorem,

lim
n→∞

∫ ∞

−∞
φn(z)e

−i(a+b)z/2 1− cos((b− a)z/2)

z2
dz =

∫ ∞

−∞
φ(z)e−i(a+b)z/2 1− cos((b− a)z/2)

z2
dz.

Hence, by Proposition 1.1, lim
n→∞

E[Ta,b;h(Xn)] = E[Ta,b;h(X)]. Thus, for any Da,b;h, we have

lim
n→∞

E[Da,b;h(Xn)] = E[Da,b;h(X)]. Moreover, noting that for h > 1, a < b,

I(a,b)(x) ≥ Da,b;h(x) ≥ I[a+(b−a)/(2h),b−(b−a)/(2h)](x) (x ∈ R),

we have

lim inf
n→∞

P (a < Xn < b) ≥ lim
n→∞

E[Da,b;h(Xn)]

= E[Da,b;h(X)] ≥ P

(
a+

b− a

2h
≤ X ≤ b− b− a

2h

)
.

By letting h→ ∞, b→ ∞, we have for ∀a ∈ R,

lim inf
n→∞

P (Xn > a) ≥ P (X > a).

On the other hand, by letting h→ ∞, a→ −∞, and by changing b to a, we have that for ∀a ∈ R,
lim inf
n→∞

P (Xn < a) ≥ P (X < a). Furthermore, by this,

lim sup
n→∞

P (Xn > a) ≤ 1− lim inf
n→∞

P (Xn < a) ≤ 1− P (X < a) = P (X ≥ a),

and hence, for ∀a ∈ R;P (X = a) = 0,

lim sup
n→∞

P (Xn > a) ≤ P (X > a).

Therefore, we get lim
n→∞

P (Xn > a) = P (X > a).
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1.6 CLT=Central Limit Theorem

Theorem 1.11 (CLT) Let RVs {Xn} be i.i.d. Set the mean EX1 = m and the variance V (X1) = v.

Then the distribution of
1√
nv

n∑
k=1

(Xk −m) converges to a normal distribution N(0, 1) with mean 0 and

variance 1. i.e., for all a < b,

lim
n→∞

P

(
a <

1√
nv

n∑
k=1

(Xk −m) ≤ b

)
=

1√
2π

∫ b

a

e−
x2

2 dx.

We first give several lemmas.

Lemma 1.3 For a RV X such that EX = 0, V (X) = E(X2) = 1,

φX

(
z√
n

)
−
(
1− z2

2n

)
= o

(
1

n

)
(n→ ∞).

Proof. If g(z) is defined by

eiz − 1− iz +
z2

2
= z2g(z),

then it holds that |g(z)| ≤ 1, lim
z→0

g(z) = 0. In fact, by Taylor’s theorem,

∃θ ∈ (0, 1); eiz − 1− iz = −z
2

2
eiθz,

and it is easy to see that |g(z)| ≤ 1, → 0 (z → 0). Thus,

exp
izX√
n

= 1 +
izX√
n

− z2X2

2n
+
z2X2

n
g

(
zX√
n

)
and by taking expectations of both hand,

φX

(
z√
n

)
= 1− z2

2n
+ E

[
z2X2

n
g

(
zX√
n

)]
.

On the last expectation, since

X2

∣∣∣∣g(zX√n
)∣∣∣∣ ≤ X2, lim

n→∞
g

(
zX√
n

)
= 0,

we can use Lebesgue’s convergence theorem it converges to 0 as n → ∞. Therefore, we get the desired
result.

[Proof of CLT]

Let X̃n = (Xn −m)/
√
v. Then EX̃n = 0, V (X̃n) = 1 and {X̃n} are i.i.d. Hence, it is enough to show

the case of m = 0, v = 1. Let Yn := (
∑n

k=1Xk)/
√
n. Since {Xk} are i.i.d., its characteristic function is

φn(z) = E

[
exp

(
iz√
n

n∑
k=1

Xk

)]
=

n∏
k=1

φXk

(
z√
n

)
= φX1

(
z√
n

)n

.

By the above lemma, for each z ∈ R, we have

lim
n→∞

φn(z) = lim
n→∞

(
1− z2

2n
+ o

(
1

n

))n

= exp[−z2/2],

where for the last equation, if we define Rn(z) by(
1− z2

2n
+ o

(
1

n

))n

=

(
1− z2

2n

)n

+Rn(z),

then we can show |Rn(z)| = o(1) (n→ ∞) (see the next quest.) Therefore, φn(z) converges pointwise to
the characteristic function φ(z) = exp[−z2/2] of a normal distribution N(0, 1). By the previous theorem
(Theorem 1.10), the proof is end.

Question 1.7 At the end of the above proof, show |Rn(z)| = o(1) (n→ ∞).
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1.7 Properties of characteristic functions

Proposition 1.2 For a characteristic function φ = φµ of a distribution µ on R, the following holds.

(1) φ(0) = 1, |φ(z)| ≤ 1, φ(z) = φ(−z).
(2) φ is uniform continuous on R.

(3) [Positive Definite]

n∑
j,k=1

αjαkφ(zj − zk) ≥ 0 for ∀n ≥ 1, ∀αk ∈ C, ∀zk ∈ R (k = 1, . . . , n).

Proof. (1) is easy. (2) For ∀z, h ∈ R, |ei(z+h)x − eizx| ≤ |eihx − 1| → 0 (h → 0) and |eihx − 1| ≤ 2.
Hence by Lebesgue’s convergence theorem,

sup
z

|φ(z + h)− φ(z)| ≤
∫

|eihx − 1|µ(dx) → 0 (h→ 0).

(3)

n∑
j,k=1

αjαkφ(zj − zk) =

∫ n∑
j,k=1

αjαke
i(zj−zk)xµ(dx) =

∫ ∣∣∣∣∣∣
n∑

j=1

αje
izjx

∣∣∣∣∣∣
2

µ(dx) ≥ 0.

Theorem 1.12 For a characteristic function φ, the following holds: Let L1(dµ) = L1(R,B, µ).

(1) If x ∈ L1(dµ), then φ ∈ C1 and φ′(z) = i

∫
xeizxµ(dx).

(2) If ∃φ′′(0), then x2 ∈ L1(dµ).

Proof. (1) is easy to show by Lebesgue’s convergence theorem and noting the following: For h 6= 0,

eix(z+h) − eixz

h
= i

x

h

∫ h

0

eix(z+s)ds,

∣∣∣∣eix(z+h) − eixz

h

∣∣∣∣ ≤ |x|
|h|

∫ |h|

0

|eix(z+s)|ds = |x|.

(2) For h 6= 0, let
ψh(z) := (φ(z + h) + φ(z − h)− 2φ(z))/h2

(a symmetric difference). It can be shown that

(1.2) ψh(z) =

∫
R

eizx
(
i sin(hx/2)

h/2

)2

µ(dx).

By limh→0 ψh(0) = φ′′(0), and by Fatou’s lemma, we have

|φ′′(0)| = lim
h→0

∫
R

(
sin(hx/2)

h/2

)2

µ(dx) ≥
∫
R

x2µ(dx).

Question 1.8 In the above proof, show the equation (1.2) and limh→0 ψh(0) = φ′′(0).

Hint for the later half Show and use φ(z ± h) = φ(z) + φ′(z)h+ φ′′(z)h2/2 + o(h2) (h→ 0).

1.8 Lévy’s inversion formula

Theorem 1.13 (Lévy’s inversion formula) Let µ be a distribution on R and φ be its character-
istic function. For a < b such that µ({a}) = µ({b}) = 0, it holds that

µ((a, b)) =
1

2π
lim

T→∞

∫ T

−T

e−iza − e−izb

iz
φ(z)dz.

More general, it holds that

µ((a, b)) =
1

2π
lim

T→∞

∫ T

−T

e−iza − e−izb

iz
φ(z)dz − 1

2
[µ({a}) + µ({b})].
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Proof. Noting that |(e−iza − e−izb)/iz| ≤ (b− a) for z 6= 0, by Fubini’s theorem,∫ T

−T

e−iza − e−izb

iz
φ(z)dz =

∫
R

µ(dx)

∫ T

−T

eiz(x−a) − eiz(x−b)

iz
dz.

If we let J(T, x, a, b) be the integral in z at the last term, then odd function disappears. Hence,

J(T, x, a, b) = 2

∫ T

0

sin(x− a)z

z
dz − 2

∫ T

0

sin(x− b)z

z
dz.

Now it is well-known that (see Question 1.6)

∫ ∞

0

sin z

z
dz =

π

2
implies

∫ ∞

0

sin zx

z
dz =

 π/2 (x > 0)
0 (x = 0)
−π/2 (x < 0).

Thus,

lim
T→∞

J(T, x, a, b) =

 0 (x < a or b < x)
π (x = a or x = b)
2π (a < x < b).

Moreover, by the graph of sin, we have |J(T, x, a, b)| ≤ 4

∫ π

0

sin z

z
dz. Therefore, by Lebesgue’s conver-

gence theorem,

lim
T→∞

∫
R

J(T, x, a, b)µ(dx) = π

∫
R

1{a,b}(x)µ(dx) + 2π

∫
R

1(a,b)(x)µ(dx).

Hence, the desired result is obtained.

Question 1.9 In the above, show |J(T, x, a, b)| ≤ 4

∫ π

0

sin z

z
dz.

(Hint)　 If x > 0, then for ∀T > 0,∫ T

0

sinxt

t
dt =

∫ Tx

0

sin z

z
dz ≤

∫ π

0

sin z

z
dz.

Theorem 1.14 (Uniqueness Theorem) For distributions µ, ν on R and their characteristic func-
tions φµ, φν , if φµ = φν , then µ = ν.

Proof. Let I be a family of all intervals of (a, b);µ({a}) = µ({b}) = ν({a}) = ν({b}) = 0. By
the inverse formula, we have µ = ν on I, Note that the number of intervals not satisfying the above
conditions is countable (see the next question). For any intervals (a, b] by upper approximating we have
µ((a, b]) = ν((a, b]). Hence, it holds on a family of all finite unions

⋃n
k=1(ak, bk] of disjoint intervals (we

dnote as A which is an add. class). Therefore M = {A ⊂ R;µ(A) = ν′(A)} contains A and this is a
monotone class. Thus M contains m(A) = σ(A) = B1 (by montone class th.), that is µ = ν on B1.

Question 1.10 Show that for a distribution µ on R, the number of a ∈ R such that µ({a}) > 0 is
countable at most.

1.9 Lebesgue-Stielties measures

For a real-valued RV X on a probability space, set F (x) := P (X ≤ x) and it is called as a distribution
function of X. Then F : R → [0, 1] satisfies the following:

(1) F ↑, i.e., it is monotone increasing, i.e., x < y ⇒ F (x) ≤ F (y).
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(2) F is rcll, i.e., it is right-continuous and has left-hand-limits, i.e.,
F (x) = F (x+) := lim

y→x,y>x
F (y), ∃F (x−) := lim

y→x,y<x
F (y).

(3) F (+∞) = 1, F (−∞) = 0

A function F : R → [0, 1] satisfying the above three properties is simply called a distribution
function on R.

On the other hand, when a distribution function F is given, we can consider the question whether
there exist a probability space (Ω,F , P ) and a random variable X such that F (x) = P (X ≤ x). The
answer is given by the following result:

Theorem 1.15 (Lebesgue-Stielties measure) For a distribution function F : R → [0, 1], ∃1µ :
B1 → [0, 1] a distribution; µ((−∞, x]) = F (x).

This distribution µ on (R,B1) is called a Lebesgue-Stielties measure (distribution) by a distri-
bution function F (x). Moreover, we can define an integral by the measure;∫

R

f(x)dF (x) :=

∫
R

f(x)µ(dx); is called a Lebesgue-Stielties integral.

We denote as dF (x) = µ(dx).

1.10 Weak convergence of measures

Let P(R) be a total family of distributions on R. Let µn, µ ∈ P(R). µn (weak) converges to µ is
defined as

µn → µ
def⇐⇒ ∀f ∈ Cb(R), 〈µn, f〉 → 〈µ, f〉,

where Cb(R) is a family of all bounded continuous functions on R, and 〈µ, f〉 =
∫
fdµ.

For RVs Xn, X, Xn converges to X in law, that is,

Xn → X in law
def⇐⇒ ∀f ∈ Cb(R), E[f(Xn)] → E[f(X)].

Question 1.11 Show that a.s. convergence implies convergence in law and that convergence in pr.
implies convergence in law.

The first half is clear. On the later half, by the property of lim sup, ∃{nk}; limE[f(Xnk
)] =

lim supEf(Xn)]. Moreover, since convergence in pr. implies there exists a suitable sub sequence which
converges a.s., ∃{Yj} ⊂ {Xnk

};Yj → X a.s. Hence, we have lim supEf(Xn)] = limE[f(Yj)] = E[f(X)]
and for lim inf it is the same. Thus, desired result is obtained.

Some reader may think the convergence of distributions should be defined as ∀A ∈ B, µn(A) → µ(A).
However, it is slightly strong, so it is not useful.

Theorem 1.16 For distributions µn, µ on R, the following are equivalent:
(1) µn → µ
(2) ∀U ⊂ R: an open set, lim inf µn(U) ≥ µ(U).
(3) ∀F ⊂ R: a closed set, lim supµn(F ) ≤ µ(F ).
(4) ∀A ∈ B1;µ(∂A) = 0, limµn(A) = µ(A).
(5) Let Fn, F be distribution functions of µn, µ.

∀x: a continuous point of F , i.e., F (x−) = F (x),
Fn(x) → F (x).

(6) ∀f ∈ Cc(R), 〈µn, f〉 → 〈µ, f〉, where Cc(R) is a family of all continuous functions with compact
supports on R and a support of f is supp f = {f 6= 0}.
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Proof. (1) ⇒ (2) It is possible to make continuous functions 0 ≤ hk ↑ 1U pointwise. Then, µn(hk) ≤
µn(U) and limn→∞〈µn, hk〉 = 〈µ, hk〉 ↑ 〈µ, 1U 〉 = µ(U). Hence, for the first inequality, by taking
lim infn→∞ and by k → 0, we get (2). In order to make hk, let Uk = {x ∈ U ; d(x, U c) ≥ 1/k} be the
closed subset which is shortened U by 1/k. Since a metric function to a non-empty set is continuous, we
define hk = d(x, U c)/(d(x, Uk) + d(x, U c)), where d(x,A) = infy∈A d(x, y) is a metric function.

(2) ⇐⇒ (3) Take the complement. (2),(3) ⇒ (4) is easy. (4) ⇒ (5) It is enough to consider
A = (−∞, x] with a continuous point x of F .

(5) ⇒ (6) can be shown by using that for f ∈ Cc(R), the approximating simple functions fk for f are
step functions with intervals which have the continuous points as their endpoints. In fact, we have for each
k ≥ 1, 〈µn, fk〉 → 〈µ, fk〉. Moreover, we can take fk such that ‖f − fk‖∞ → 0(k → ∞). Thus, it holds
that |〈µn, f〉−〈µ, f〉| ≤ 〈µn, |f−fk|〉+ |〈µn, fk〉−〈µ, fk〉|+〈µ, |f−fk|〉 ≤ 2‖f−fk‖∞+ |〈µn, fk〉−〈µ, fk〉|.
By letting n→ ∞ and k → ∞, we have the desired result.

(6) ⇒ (1) It is enough to approximate f ∈ Cb(R) uniformly on compact sets by the elements
of Cc(R). Concretely, let gk ∈ Cb(R); 0 ≤ gk ≤ 1 be a continuous function such that g = 1
on [−k, k], g = 0 on [−k − 1, k + 1]c, and for a sufficiently large K > 1, we may consider fgK .
Moreover, we use ∀ε > 0, ∃K; sup

n≥1
µn([−K,K]c) < ε which is obtained by (6). In fact, for this, by

1[−k,k] ≤ gk ≤ 1[−k−1,k+1] and (6), we have µ([−k, k]) ≤ 〈µ, gk〉 = lim
n→∞

〈µn, gk〉 ≤ lim
n→∞

µn([−k−1, k+1]).

Hence, ∀ε > 0, ∃K0; lim
n→∞

µn([−K0 − 1,K0 + 1]c) ≤ µ([−K0,K0]
c) < ε. Furthermore, we can get

∃K ≥ K0; sup
n≥1

µn([−K,K]c) < ε.

Some reader may still think that it is inadequate for the validity of the definition of the convergence
of the distributions. However, we have more results related to the convergence of characteristic functions,
and from these the readers may think it is necessary and sufficient.

Theorem 1.17 Let φn, φ be characteristic functions of µn, µ ∈ P(R). If µn → µ, then φn → φ
(uniform on compact sets)

Since f(x) = eizx is bounded continuous, the pointwise convergence is clear. In order to show the
uniform convergence on compact sets, we need the result such that if {µn} is tight then it is relatively
compact. (we describe at the end of this section.)

Theorem 1.18 (Lévy’s Continuity Theorem) Let φn be a characteristic function of µn ∈ P(R).
If ∃φ;φn → φ (pointwise) and φ is continuous at the origin, then ∃µ: a distribution on R; φ = φµ is a
characteristic function of µ and µn → µ. Moreover, φn → φ (uniform on compact sets).

Corollary 1.3 (Glivenko’s Theorem) Let φn, φ be characteristic functions of µn, µ ∈ P(R). If
φn → φ (pointwise), then µn → µ.

Note that in Lévy’s theorem, we can not omit the continuity at the origin of φ. For instance, the
characteristic function of N(0, n) satisfies φn(z) = exp(−nz2/2) → 1{0}(z), however, the limit is not
continuous at the origin, and hence, it is not a characteristic function.

To show this result, we use the following result:

Theorem 1.19 Λ ⊂ P(R) is tight
def⇐⇒ ∀ε > 0, ∃Kε ⊂ R: a compact set; ∀µ ∈ Λ, µ(Kε) > 1 − ε.

⇐⇒ Λ is relatively compact, i.e., ∀{µn} ⊂ Λ, ∃{nk}, µ ∈ P(R);µnk
→ µ

Proof. It is easy to show that “relatively compact is tightness”. If it is not tight, then ∃ε0 > 0, ∀K:
a compact set, ∃µK ∈ Λ;µK(K) < 1 − ε0. Let K = [−n, n] and µn = µK . By the assumption
∃µnk

→ ∃µ ∈ P(R). If nk ≥ n, then µnk
([−n, n]) ≤ µnk

([−nk, nk]) < 1 − ε. Letting k → ∞, we
have µ((−n, n)) ≤ lim inf µnk

([−n, n]) ≤ 1 − ε. On the other hand, since n ≥ 1 is arbitrary, we have
µ(R) ≤ 1− ε. This contradicts.

On the inverse, “tightness implies relatively compact” (we use the result in the proof of Lévy’s
Theorem), we only give the outline.
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We first consider the distribution functions Fn(rk) = µn((−∞, rk]) ∈ [0, 1] for rational numbers
{rk} = Q. For each k = 1, 2, . . . , if we take a sub-sequence {nkj } such that {nk+1

j } ⊂ {nkj } and Fnk
j
(rk)

converges, then the diagonal sequence nj = njj ; Fnj
(rk) converges for

∀k. We define the limit as F (rk) :=

lim
j→∞

Fnj (rk). Moreover, for ∀x ∈ R, we define F (x) = infr>x;r∈Q F (r). Then it is non-decreasing,

right-continuous and has left-hand limits. Furthermore, by tightness, it holds F (−∞) = 0, F (∞) = 1.
Therefore, F (x) is a distribution function and it is possible to show that Fnj

(x) → F (x) for all continuous
points x of F .

Here we give a result which is used in the following proof.

� {µn} ⊂ P(R) is relatively cpt and ∃µ ∈ P(R); ∀{nk}, µnk
→ µ =⇒ µn → µ.

In fact, if it is not so, then ∃g ∈ Cb(R
d); 〈µn, g〉 6→ 〈µ, g〉. Hence, we have ∃{nk}; ∃〈µnk

, g〉 →
∃α 6= 〈µ, g〉. Moreover by the relativley compactness, we have ∃{nkj

};µnkj
→ ∃µ̃ 6= µ because of

〈µ̃, g〉 = lim〈µnkj
, g〉 6= 〈µ, g〉. However, this contradicts µ̃ = µ.

[Proof of Lévy’s Continuity Theorem] By the assumption, we can show {µn} is tight, and hence,
it is relatively compact; ∃µnk

→ ∃µ ∈ P(R). Thus, φ = φµ, and again by relatively compactness, we
have µn → µ. In fact, if it is not so, then by the contraposition of the above result ∃µnk

→ ∃µ̃ 6= µ.
Hence, φµ̃ = φµ. By the uniqueness theorem we have µ̃ = µ. This contradicts.

On the tightness, in general, for ∀ν ∈ P(R), ∀L > 0, it holds

ν([−2L.2L]c) ≤ L

∫ 1/L

−1/L

(1− φν(z))dz.

In fact, by Fubini (note that |1− eizx| ≤ 2), we have

(RHS) = L

∫ 1/L

−1/L

dz

∫
R

(1− eizx)ν(dx) =

∫
R

ν(dx)L

∫ 1/L

−1/L

(1− eizx)dz

=

∫
R

ν(dx)2

∫ 1

0

(1− cos(zx/L))dz =

∫
R

2

(
1− sinx/L

x/L

)
ν(dx).

By 1− sinx/L

x/L
≥ 0 and by

sinx/L

x/L
≤ 1

2
if |x| ≥ 2L, we get the above.

Now, since φ is continuous at 0, we have

lim
L→∞

L

∫ 1/L

−1/L

(1− φ(z))dz = lim
h→0

1

h

∫ h

−h

(1− φ(z))dz = 2(1− φ(0)) = 0,

where the last equal is due to φ(0) = limφn(0) = 1. Hence, noting that φn → φ and |1− φn(z)| ≤ 2, we
have ∀ε > 0, ∃L > 1; lim supµn([−2L, 2L]c) < ε. Therefore, ∃N ; a
n ≥ N,µn([−2L, 2L]c) < ε, and by taking a large L if necessary, it also holds for ∀n < N .

Finally, we show “µn → µ =⇒ ϕn → ϕ (uniform on compact sets)”.
{µ, µn} is relatively compact, and hence, it is tight; ∀ε > 0, ∃K ⊂ R: a compact set; µ(K), µn(K) >

1− ε. We have
∃δ > 0; |∀h| < δ, sup

x∈K
|eihx − 1| < ε.

Thus, for the same h, supz∈R |φn(z + h) − φn(z)| < 3ε holds. For any compact sets C ⊂ R, by
taking {z1, . . . , zk}: δ-dense points, i.e., ∀z ∈ C, ∃j; |z − zj | < δ, and by letting N ≥ 1 such that
∀n ≥ N, |φn(zj)− φ(zj)| < ε, it holds that uniformly in ∀z ∈ C,

|φn(z)− φ(z)| ≤ |φn(z)− φn(zj)|+ |φn(zj)− φ(zj)|+ |φ(zj)− φ(z)| < 7ε.
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2 Large Deviation Principle (=LDP)

Let RVs {Xn} be i.i.d., EX1 = m ∈ R and V (X1) = v > 0. Set Sn =
∑n

k=1Xk. For a > m, we
investigate P (Sn > an) ∼? as n→ ∞.

By LLN, Sn/n→ m, a.s. holds and this implies P (Sn > an) → 0. Moreover, By CLT,

P
(
Sn >

√
na+mn

)
= P

(
Sn −mn√

n
> a

)
→ 1√

2πv

∫ ∞

a

e−x2/(2v)dx.

Hence, if we change a to
√
n(a−m), then roughly speaking, we get

P (Sn > na) ∼ 1√
2πv

∫ ∞

√
n(a−m)

e−x2/(2v)dx

We investigate the decreasing order and the coefficient as n→ ∞.
Clearly it is a probability of a part far from the center (mean), and hence, it is “Large Deviation”.
The following result holds.

Theorem 2.1 (LDP；Cramér’s Theorem) Let {Xn} be i.i.d. and assume that for ∀t ∈
R, E[et|X1|] <∞. Set ψ(t) = E[etX1 ] and Sn =

∑n
k=1Xk. Then, It holds that for ∀a > EX1,

lim
n→∞

1

n
logP (Sn ≥ an) = −I(a), i.e., P (Sn ≥ an) ∼ e−nI(a),

where I(x) = supt∈R(xt− logψ(t)) is a lower semi-continuous, convex function on R satisfying that

lim
x→±∞

I(x) = ∞, I(x) ≥ 0 = I(EX1) (x ∈ R).

Cramér showed under the weak condition; ∃t > 0;E[et|X1|] <∞.
Note that
· I: lower semi-conti. at x ⇐⇒ ∀ε > 0, ∃δ > 0; |∀y − x| < δ, I(y) > I(x) − ε. This implies

I(x) ≤ lim infy→x I(y).
· I: convex on an interval J ⇐⇒ ∀p, q ≥ 0; p+ q = 1, ∀x, y ∈ J, I(px+ qy) ≤ pI(x) + qI(y).

We first give the following useful result:

Theorem 2.2 (sub-additive theorem) If a sequence {an} satisfies sub-additivity;
am+n ≤ am + an, then

∃ lim(an/n) = inf(an/n). On the other hand, if {bn} satisfies super-additivity;
bm+n ≥ bm + bn, then

∃ lim(bn/n) = sup(bn/n).

Proof. By lim inf(an/n) ≥ inf(an/n), it is enough to show that for ∀m ≥ 1, lim sup(an/n) ≤ am/m.
Fix an arbitrary m ≥ 1 and for any n ≥ 1, by dividing n by m we have n = km+ r with 0 ≤ r < m and
k = kn ≥ 0. By sub-additivity, an ≤ kam + ar. and dividing by n, we have

an
n

≤ km

km+ r
· am
m

+
ar
n
.

Hence, by taking lim supn→∞ in both sides, and by k = kn → ∞ we get the desired result.

We first discuss the existence of the limit of n−1 logP (Sn ≥ na) for a > EX1.
By {Xn} being i.i.d.

P (Sm ≥ ma)P (Sn ≥ na) = P (Sm+n − Sn ≥ ma, Sn ≥ na) ≤ P (Sm+n ≥ (m+ n)a).

If we set bn = logP (Sn ≥ na), then it has super-additivity. Thus, by sub-additive theorem we have
∃ lim(bn/n) = sup(bn/n) =: −Ĩ(a) and 0 ≤ Ĩ(a) ≤ ∞.
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In order to show LDP, we need some results such that there exists a probability measure corresponding
to a distribution function, and it can be possible to construct infinitely many independent RVs with the
same distribution (and a probability space). Moreover, we need Existence Theorem of Lebesgue-Stielties
Measures and Kolmogorov’s Extension Theorem.

We describe them later, and we first give the proof of LDP.

[Proof of LDP] Let I(a) := supt{at− logψ(t)}. In order to show that for ∀a > EX1, Ĩ(a) = I(a),
i.e., limn→∞

1
n logP (Sn ≥ an) = −I(a), it is enough to show that if a = 0 > EX1, then

lim
n→∞

1

n
logP (Sn ≥ 0) = log ρ,

where ρ := inft∈R ψ(t) (note that log 0 = −∞). Because for a > EX1, by considering X1 − a instead of
X1, we have E[X1 − a] < 0 and ψ(t) is changed to e−taψ(t), and I(a)is to I(0) = − log ρ.

For simplicity, we denote X1 = X. By the assumption ∀t ∈ R, E[et|X|] <∞, we see that ∀n ≥ 1, ∀t ∈
R, E[|X|net|X|] < ∞. (In fact, if x > 0, then xn ≤ n!ex.) hence, by the convergence theorem (more
exactly, by the following exchange theorem of differential and integral; Theorem 2.3), ψ(t) is in C∞ and
ψ′(t) = E[XetX ], ψ′′(t) = E[X2etX ] > 0. (Note that P (X = 0) < 1, i.e., P (X 6= 0) > 0 by EX < 0.)
Hence, ψ(t) is strictly convex in t ∈ R and ψ′(0) = EX < 0.

(Case 1) P (X ≤ 0) = 1, P (X = 0) ≥ 0.
ψ is decreasing and by the convergence theorem, ψ(t) ↓ P (X = 0) = ρ ≥ 0 (t ↑ ∞). If ρ > 0, then

P (Sn ≥ 0) = P (X1 = 0, · · · , Xn = 0) = ρn and the left hand side of the desired equation is equal to
log ρ. Even if ρ = 0, then P (Sn ≥ 0) = 0, and by log 0 = −∞, we get the desired result as −∞ = −∞.
(We may think this calculus is contained to the above.)

(Case 2) P (X < 0) > 0, P (X > 0) > 0.
We have ψ(±∞) = ∞. In fact, by the continuity of probability measure, ∃δ > 0;P (X ≥ δ) > 0, and

hence, if 0 < t → ∞, then ψ(t) ≥ E[etX ;X ≥ δ] ≥ eδtP (X ≥ δ) → ∞. The case of 0 > t → −∞ is
the same. On the other hand, since ψ is strictly convex and ψ′(0) = EX < 0, ∃τ > 0;ψ′(τ) = 0, ψ(τ) =
inf ψ = ρ > 0. For the distribution function F (x) = P (X ≤ x) of X, we use a Cramér transform:

F̂ (x) :=
1

ρ

∫ x

−∞
eτydF (y) =

1

ρ
E[eτX ;X ≤ x], i.e., dF̂ (x) = 1

ρe
τxdF (x).

By F̂ (∞) = ψ(τ)/ρ = 1, F̂ is also a distribution function. Let {X̂n} be i.i.d. with F̂ as a distribution

function. Let Ŝn =
∑n

k=1 X̂k.
Then, it holds that

(2.1) EX̂1 = 0, σ̂2 := V (X̂1) ∈ (0,∞), P (Sn ≥ 0) = ρnE
[
e−τŜn1{Ŝn≥0}

]
Now if we admit these, then for ∀M > 0,

e−τMσ̂
√
nP

(
0 ≤ Ŝn

σ̂
√
n
< M

)
≤ E

[
e−τŜn1{Ŝn≥0}

]
≤ 1.

Moreover, since CLT holds for Ŝn, the above probability converges to

∫ M

0

e−x2/2dx/
√
2π > 0 as n→ ∞.

Thus, in each terms, by taking log, dividing by n and taking lim inf, we have

lim inf
n→∞

1

n
logE

[
e−τŜn1{Ŝn≥0}

]
= 0.

Hence, the desired result is obtained:

lim
n→∞

1

n
logP (Sn ≥ 0) = log ρ.
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We show (2.1). Let ψ̂(t) := E[etX̂1 ]. Then,

ψ̂(t) =

∫
R

etxdF̂ (x) =
1

ρ

∫
R

etxeτxdF (x) =
1

ρ
ψ(t+ τ).

Hence, ψ̂ is also in C∞ and EX̂1 = ψ̂′(0) = ψ′(τ)/ρ = 0, V (X̂1) = ψ̂′′(0) = ψ′′(τ)/ρ ∈ (0,∞). Moreover,

by dF̂ (x) = 1
ρe

τxdF (x), we have dF (x) = ρe−τxdF̂ (x). Thus,

P (Sn ≥ 0) =

∫
{
∑n

k=1 xk≥0}
dF (x1) · · · dF (xn) = ρn

∫
{
∑n

k=1 xk≥0}
e−τ

∑n
k=1 xkdF̂ (x1) · · · dF̂ (xn)

Therefore, the last equation is obtained.
Finally, we investigate the properties of I(x) = supt∈R{xt − logψ(t)}. In general, a supremum of

a family of linear functions is convex, and supremum of a family continuous functions is lower semi-
continuous (→ make sure.) Hence, the supremum I(x) of linear functions x 7→ xt − logψ(t) is lower
semi-continuous and convex.

On I(x) → ∞ (x → ±∞), as x → ∞, if we assume it is not, then ∃L > 0, ∃xn ≥ n; I(xn) < L, i.e.,
∀t ∈ R, xnt− logψ(t) < L. By taking t = 2L/xn, we have 2L− logψ(2L/xn) < L. By xn → ∞ and by
the continuity of ψ, 0 < L < logψ(2L/xn) → logψ(0) = log 1 = 0. However, this is contradict. In case
of x→ −∞ is the same.

On I(x) ≥ 0 = I(EX), I(x) ≥ − logψ(0) = 0 (taking t = 0) and − log x is convex, and hence, by
Jensen’s inequality (see the next question), we have ∀t ∈ R, logψ(t) = logE[etX ] ≥ E[log etX ] = tEX,
i.e., tEX − logψ(t) ≤ 0. Moreover, by I(x) ≥ 0, 0 ≤ I(EX) = supt(tEX − logψ(t)) ≤ 0. Thus,
I(EX) = 0.

Theorem 2.3 (Exchange Theorem of Differential and Integral) Let (X,F , µ) be a general
measure space. For each t ∈ (a, b), let ft = ft(x) ∈ L1(dµ) and for µ-a.e x ∈ X, ft(x) be differen-
tiable in t ∈ (a, b). If supt∈(a,b) |∂tft| ∈ L1, then

dt

∫
X

ft(x)µ(dx) =

∫
X

∂tft(x)µ(dx).

Especially, if (X,F) = (R,B1) and µ = µX is a distribution of a RV X, then

dtE[ft(X)] = E[∂tft(X)],

where dt = d/dt, ∂t = ∂/∂t.

Proof. It is clear by mean-value theorem and Lebesgue’s convergence theorem. In fact, for t, t+ h ∈
(a, b);h 6= 0, by mean-value theorem, for a.e. x,

∃θ ∈ (0, 1);
1

h
(ft+h(x)− ft(x)) = ∂tft+θh(x).

Therefore, by the assumption, this can be estimated by an integrable function which is independent of h
and t. Hence, by the convergence theorem, we can change the limit as h→ 0 and the integral in x.

Question 2.1 (Jensen’s ineq.) Let −∞ ≤ a < b ≤ ∞. For a convex function f on a interval I = (a, b)
and I-valued integrable RV X; f(X) ∈ L1, show

f(EX) ≤ E[f(X)], i.e., f

(∫
R

xµX(dx)

)
≤
∫
R

f(x)µX(dx)

A convex function is the supremum of a family of linear functions which are lower than or equal to
it, i.e., f(x) = sup{cx+ d; cy + d ≤ f(y)(∀y ∈ I)}. Hence, it is clear by cEX + d ≤ E[f(X)]. In fact, for
a < s < t < u < b, by convexity

f(t)− f(s)

t− s
≤ f(u)− f(t)

u− t
.
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(if t = ps+ qu; p, q ≥ 0, p+ q = 1, then f(t) ≤ pf(s) + qf(u), and hence, p(f(t)− f(s)) ≤ q(f(u)− f(t)).
by p = (u − t)/(u − s), q = (t − s)/(u − s) and it is obtained by multiplying by (u − s) and dividing by
(u−t)(t−s).) Let αt = sups<t(the left-hand side). Then, αt(u−t) ≤ f(u)−f(t), i.e., f(u) ≥ αt(u−t)+f(t)
(u > t) This holds for u ≤ t by the definition of αt, and thus, it holds for all a < u < b. Therefore,
a < t < b are arbitrary. Clearly, it is equal if t = u, and it is expressed as a supremum of linear functions.

In another way, directly, for f(u) ≥ αt(u − t) + f(t), by substituting t = EX, u = X and by taking
expectations we get the desired result.

Question 2.2 Show a function as the supremum of a family of continupus functions is lower semi-
continuous.
∀t ∈ T , ft(x): conti. in x =⇒ g = supt∈T ft is lower semi-conti.

∀x: fixed. By the property of supremum, ∀ε > 0, ∃t ∈ T ; g(x) − ε/2 < ft(x) (≤ g(x)). Since ft is
conti. at x, ∃δ > 0; |∀y − x| < δ, |ft(y) − ft(x)| < ε/2. Hence, ft(x) − ε/2 < ft(y). From these, we have
g(y) ≥ ft(y) > ft(x)− ε/2 > g(x)− ε.

3 Extension Theorem of Measures and Its Applications

In this section, we describe three important theorems which are particularly necessary in probability
theory, by using Extension Theorem of Measures.

We first describe the probabilistic version of Extension Theorem of Measures.
[Extension Theorem of Probability Measures]　 Let A be an additive class on Ω. If a finite

additive set function P0 : A → [0, 1] satisfies P0(Ω) = 1 and if it is σ-additive on A, i.e.,

(3.1) An ∈ A (n = 1, 2, . . . ) are disjoint and

∞⋃
n=1

An ∈ A =⇒ P0(

∞⋃
n=1

An) =

∞∑
n=1

P0(An),

then there exists uniquely a probability measure P on (Ω, σ(A)) such that P |A = P0.
This P is given as an outer measure of P0:

P (A) = inf

{ ∞∑
n=1

P0(An);An ∈ A,
∞⋃

n=1

An ⊃ A

}
,

where A ⊂ Ω is an arbitrary subset
We give the equivalent condition to (3.1) “σ-additive on A”:

(3.2) An ∈ A ↓ ∅ =⇒ lim
n→∞

P0(An) = 0

(3.3) An ∈ A ↓, lim
n→∞

P0(An) > 0 =⇒
⋂
n≥1

An 6= ∅

In practical applications we often check (3.3).

3.1 Infinite-dimensional product probability spaces

Let (Ωn,Fn, Pn) be a probability space. We set an n-product probability space as follows:

(Ω(n),F (n), P (n)) := (

n∏
k=1

Ωk,

n⊗
k=1

Fk,

n⊗
k=1

Pk)

Moreover, set Ω :=
∏∞

n=1 Ωn and

A =
{
A = An × Ωn+1 × Ωn+2 × · · · ;An ∈ F (n), n = 1, 2, . . .

}
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Then, A is an additive class on Ω. For A = An × Ωn+1 × Ωn+2 × · · · , set P0(A) = P (n)(An), then
P0(∅) = 0 and P0 can be a finite additive function on A. It is possible to show that this satisfies (3.3).
Therefore, ∃1P a probability measure on σ(A); P = P0 on A. That is, for each n,

P (A1 × · · · × An × Ωn+1 × Ωn+2 × · · · ) = P1(A1) · · ·Pn(An) (Ak ∈ Fk)

and P is unique. We denote

∞⊗
n=1

Fn := σ(A),

∞⊗
n=1

Pn := P and

(

∞∏
n=1

Ωn,

∞⊗
n=1

Fn,

∞⊗
n=1

Pn) is called (Ωn,Fn, Pn) (n = 1, 2, . . . ) an infinite(-dimensional) product prob-

ability space.

[Construction of independent RVs]
By the above result we can construct infinite countable number of independent RVs such that they

have given distributions. For instance, for each n ≥ 1, let µn be a distribution on (R+ = [0,∞),B(R+)).
We denote their infinite product probability space as (Ω,F , P ), and for ω = (ωn) ∈ Ω = R∞

+ , let
Xn(ω) = ωn, then Xn are RVs with distributions µn and independent. In fact,

P (X1 ∈ A1, X2 ∈ A2) = P (A1 ×A2 ×R∞
+ ) = µ1(A1)µ2(A2)

In case of Ω(n) = Rn, the above result can be extended to the following.

3.2 Kolmogorov’s extension theorem

For each n ≥ 1, let (Rn,Bn, Pn) be an n-dimensional probability space. These satisfy the following
consistency condition:

Pn(A) = Pn+1(A×R) (A ∈ Bn).

Let
B∞ = B(R∞) := σ(

⋃
n≥1

(Bn ×R∞))

This is called an infinite-dimensional Borel filed. Then, there exists uniquely a probability measure
P on (R∞,B∞) such that P (An ×R∞) = Pn(An) (An ∈ Bn).

In fact, set A = {A = An ×R∞;An ∈ Bn, n = 1, 2, . . . } and for A = An ×R∞, set P0(A) = Pn(An),
Then P0(∅) = 0 and P0 can be a finite additive set function on A. It is possible to show P0 satisfies (3.3).
Therefore, there exists uniquely a probability measure P on B∞ = σ(A) such that P (An×R∞) = Pn(An)
(An ∈ Bn).

The following two results hold in general measure spaces, however, we describe the probabilistic
versions.

Theorem 3.1 (Approximating Theorem) Let (Ω,F , P ) be a probability space. If A ⊂ F is an
additive class, then

∀A ∈ σ(A), ∃An ∈ A; lim
n→∞

P (A4An) = 0,

(where A4B = (A \B) ∪ (B \A) is a symmetric difference).

Proof. Let G be a family of all A ⊂ Ω satisfying the condition of the theorem. It can be seen that
this contains A and this is a σ-additive class. Therefore, σ(A) ⊂ G and the desired result is obtained.

Question 3.1 Show the above G is a σ-additive class.
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For a countable union, let ∀ε > 0. For each An ∈ G, fix Bn ∈ A;P (An4Bn) < ε/2n+1. we
approximate A :=

⋃
An by a finite sum

⋃
n≤N An (by the upper continuity, we estimate the difference of

probabilities by ε/2). Moreover, since it can be approximated by CN :=
⋃

n≤N Bn ∈ A, we get A ∈ G.
In fact, by

A4

(
N⋃

n=1

Bn

)
⊂

(
A \

(
N⋃

n=1

An

))
∪

N⋃
n=1

(An4Bn)

it holds that

P

(
A4

(
N⋃

n=1

Bn

))
≤ P

(
A \

(
N⋃

n=1

An

))
+

N∑
n=1

P (An4Bn) < ε.

Corollary 3.1 Let (Rd,Bd, P ) be a probability space. For each A ∈ Bd, ∃Cn a bounded closed set
and ∃Gn a open set such that Ck ⊂ A ⊂ Gk, limP (A \ Cn) = limP (Gn \A) = 0.

Proof. Let A be a family of all finite unions of basic rectangles
∏d

k=1(ak, bk]. It is an additive class
and σ(A) = Bd. Since P (A) is also an outer measure;

P (A) = inf

∑
n≥1

P (An);An ∈ A,
⋃
n≥1

An ⊃ A


for ∀ε > 0, A can be approximated by

⋃
An from outer as the difference of probabilities is lower than ε/2

(we simply call A is ε/2-approximated). Each An is clearly ε/2n+1-approximated by a finite unions of
product sets of open intervals. The countable union of them is also an open set and A is ε/2-approximated.
Thus, A is ε-approximated by an open set from outer. Moreover, by the complement, A is approximated
by a closed set from inner, and it is approximated by a bounded closed set (it is enough to consider the
intersection with {|x| ≤ n}).

3.3 Topics on independence of infinitely many numbers

In this section, for each n ≥ 1, let Xn be a real-valued RV and Fn be a sub σ-additive class of a σ-additive
class F .

In the Borel-Cantelli’s lemma, we showed that if the sum of probabilities of infinitely many events is
finite, then the probability of the upper limit is 0;

An ∈ F ,
∑

P (An) <∞ =⇒ P (lim supAn) = 0.

However, when the sum is infinite, does it hold that the probability is positive or 1?
One of the answer for this question is the following result:

Theorem 3.2 (Borel-Cantelli’s Theorem) When An ∈ F are independent, if
∑
P (An) = ∞,

then P (lim supAn) = 1.

Proof. P (lim inf Ac
n) = limN→∞ P (

⋂
n≥N Ac

n), and noting that {Ac
n} are also independent, we have

P (
⋂

n≥N Ac
n) =

∏
n≥N (1− P (An)). By 1− x ≤ e−x and

∑
n≥N P (An) = ∞, we have P (lim inf Ac

n) = 0.

A element of σ-additive class
⋂

N≥1 σ
(⋃

n≥N Fn

)
is called a tail event. Moreover, a RV which is

measurable w.r.t.(=with respect to) this, is called a tail function. Furthermore, if Fn = σ(Xn) =
X−1

n B1), then they are called a tail event, tail function w.r,t. {Xn}.

Question 3.2 Show the following: For An ∈ Fn, lim supAn, lim inf An are tail events. {Xn → 0} is
also a tail event w.r.t. {Xn}.
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Roughly speaking, a tail event or a tail function is an event or a RV if it is independent of finite
number of F1, . . . ,Fn or X1, . . . , Xn, respectively.

Theorem 3.3 (Kolmogorov’s 0-1 law) If sub σ-additive classes Fn ⊂ F are independent, then
the probabilities of all tail events are 0 or 1.

Proof. Note that P (A) = 0 or 1 ⇐⇒ P (A)2 = P (A) ⇐⇒ A is independent of its self. In order to
show this, we use Approximating Theorem and we can take an approximating event which is independent
of A. Set

Gn = σ

⋃
k≤n

Fk

 , A =
⋃
n≥1

Gn,

then A is an additive class and σ(A) = σ
(⋃

k≥1 Fk

)
holds. By A ∈ σ(A) and Approximating The-

orem, ∀ε > 0, Aε ∈ A;P (A4Aε) < ε. By the definition of A, ∃n;Aε ∈ Gn On the other hand, A ∈
σ
(⋃

k≥n+1 Fk

)
, is independent of Aε. Therefore, A is independent of A, i.e., P (A) = P (A∩A) = P (A)2.

In fact, by A ⊂ (A ∩B) ∪ (A4B) ⊂ B ∪ (A4B), we have

P (A) ≤ P (A ∩Aε) + P (A4Aε) < P (A)P (Aε) + ε ≤ P (A)(P (A) + P (A4Aε)) + ε < P (A)2 + 2ε.

By a similar way,

P (A) ≥ P (A ∩Aε)− P (A4Aε) > P (A)P (Aε)− ε ≥ P (A)(P (A)− P (A4Aε))− ε > P (A)2 − 2ε.
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