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In this text we describe “additive processes”, which are in a basic group of stochastic processes, and
which have independent increments. Especially, we investigate “Lévy processes” in detail, which are time
homogeneous additive processes, continuous in probability, and have first-order discontinuous sample
paths, that is, they are right-continuous and have left-hand limits.

We will show the following: For every Lévy process, it has infinitely divisible distributions and their
characteristic functions are given by the Lévy-Khintchine representations.

Also its sample path has the Lévy-Ito decomposition, which is a sum of Gaussian process with
drift and a jump process.

Reference. SATO, Ken-ichi; “Kahou Katei” (in Japanese) as “Additive Processes”, Kinokuniya (1990). This
was rewritten in English and revised to “Lévy Processes and Infinitely Divisible Distributions”, Cambridge (1999,
2002).

This text is based on the above text and the proofs are almost the same. However, the author tried to simplify
and to make refinements in order to understand easily.
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1  Overview of Lévy Processes and Infinitely Divisible Distri-
butions

Let (Q,F,P) be a probability space, that is,  is a non-empty set, F is a o-additive class on €2 and
P = P(dw) is a probability measure on a measurable space (€2, F).

A stochastic process (X;)i>o is random variables X; = X, (w) parameterized by time ¢ > 0.

In the text we only consider the R?valued processes. So we denote X; = (X7);<4 and a vector as
r=(27)<q = (2,...,2%) € R% Also we denote inner product as (z,y) =z -y = Dica®y’.

A Lévy process (X;)i>o is an R?valued stochastic process starting from the origin 0, which is
continuous in probability, has time homogeneous independent increments and right-continuous sample
paths with left-hand limits.

This is equivalent to that Y¢ > 0, the distribution of X;; uy = Po X; !, i.e., ps(dz) = P(Xyindz) is an
infinitely divisible distribution. This is also equivalent to that if we let u = puy, then for any ¢t > 0,
1y = pt*, where the right-hand side denotes #-convolution of .

A convolution of measures u, v is defined as

prvtde) = [ ulde = putdy) = [vtdz = putdy) = [ [ Laaty+ utdyiaz),

n+1x* n*

If v = p, then u?* = p#* p. In general, for n € N, we define u = pu™ % pu. Moreover, if p is an

infinitely divisible distribution, then for any ¢ > 0, u** can be defined.
In this case, the above is equivalent to that the characteristic function of X;; fiy(z) := E[e**X¢)]
(i = v/—1) has the Lévy-Khintchine representation (LK-representation), i.c., i;(z) = e'¥(*) with

1 ) )
z)=——=(Az,z %% _ 1)y(dz e 1 —i(z, x))v(dx) + iy, 2),
W) = —gtn b [ @ )+ [ (@ i i) +if )

where

e A = (aji): a non-negative definite d x d-matrix, i.e., ajr = Y ,c,, oy0F With 0 = (0))i<m, j<a: a
diffusion coeflicient.

e v =v(dz) is a Lévy measure on R? such that ©({0}) = 0 and that / 1A |zv(dz) < oo
Rd

e v=(7)j<a € RY,

Furthermore, this is equivalent to the following: Lévy-Ito decomposition (LI-decomposition)
dXi(w) = vdt + odB(w) + / N (w;dt, dx) + / oN (w; dt, dz), Xy = 0.
|z|>1) || <1)

More precisely,

¢
Xi(w) =4t + 0By (w // N (w; ds,dx)Jr// N (w; ds, dzx).
Iw\>1 0 J(lz|<1)

If X; = (X} )]<d—(Xt1,...,Xtd),then

X/ =~7t+ ZazBé / / 27 N (w; ds, dz) / / 2/ N (w; ds, dz),
(lz[=1) (lz1<1)

<m

where B; = (Bf) is an m-dimensional Brownian motion, N (w; dt, dz) is a dtv(dx)-Poisson random measure
on [0,00) x R4, N = N — N is a compensated Poisson random measure with N = E[N], i.e, N(dt, dz) =
dtv(dzx) is a mean measure of N.

Let AX: := Xt — Xt~ be a jump of X; at time ¢ and let N(dt,dz) := #{(¢, AX:) € dt X dx; AX; # 0} be a
measure of jump-times and jumps on a time space. Then, it can be shown that N is a Poisson random measure
by the property of time homogeneous independent increments of the Lévy process (X).
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The above decomposition theorem means that if we remove large jumps in order from X, then the remaining
as the limit is a continuous process and it is a Gaussian process. (Kiyoshi ITO showed the way.) That is, let

t
X! =X, — > AX, = X; —/ / xN (ds, dz).
0 J(zl>1/n)

s<HIAXS|>1/n

if n — oo, then X — 7X¢ in some sense, and X¢ is a continuous Lévy process, i.e., a Gaussian process.

If X; have a LI-decomposition, then it can be shown easily by using Ito formula that the characteristic

function has the above representation as follows;
For f(z) = e** € C%2(RY),

(X)) = 7 DFX)dt+ 0 DF(X)AB, + Lo” - D*F(X,)dt
[ f ) — )N (e, da)
(Jz|>1)
+ / F(Xoe +2) — F(X,_)|N(dt, )
(Jz|<1)

+ / (Xt a) — f(Xe) — 2 DF(X,)w(da)dt,
(Jz|<1)

where v- D =~79;, 0 - D = agaj, 0. D? = Zegm agafajzk (we use the rule of summing on the same
index of supper and lower.) and 9; = 0/0x;, 6]2 = 0%/0z ;0.
If we take the expectation, then by EB; = EN = 0, we have

dpi(2) = dE[f(X:)] = Eldf(X})]

. 1 j
= iy zpe(z)dt — 5 KZ olopzizip(2)dt

+/(|x21) (Pt(Z)[em'Z _ l]dtu(drﬂ) +/ @t(z)[ezx~z —1—ix- Z]dtl/(dx)

(J=z|<1)

. 1 ;
= Lpt(Z){Z’}/ cz— §aj;€z]zk

+/ [e% — 1]v(dx) —|—/ [ -1 —iz - z]u(dm)}dt.
(lz[=1) (lz1<1)

That is, dg:(z) = ¢4(2)¥(2). Hence by the initial condition ¢g(z) = E[e?*¥°0] = 1, we get the desired
representation ¢y (z) = e'¥(%),

On the other equivalences, if X; has the LI-decomposition, then by the properties of the stochastic
integral (X;) has time homogeneous independent increments, thus, it is a Lévy process.

If the characteristic function has LK-representation, then the distribution of X; is a infinitely divisible
distribution and it is corresponding to the Lévy process in the sense of law, one to one (except the law
equivalence). A Lévy process in the sense of law is equivalent to a Lévy process, hence they are essentially
the same.

It remains to show that a Lévy process has a Lévy-Ito decomposition. This can be shown directly
mentioned as above. However, by using above results we can show if X; is a Lévy process, then the
characteristic function has the LK-representation. On the other hand, if Y; has the LI-decomposition,
then the characteristic function has the same representation. Hence, they are equivalent in law and
their paths are right-continuous and have left-hand limits. Thus, both have the same distributions on
D([0,00) — R%). Therefore, X; can have the same decomposition.

If readers want to know about Ito integrals (stochastic integrals) and Ito formula and so on, please see
the text of stochastic analysis; “Ito integrals and Stochastic Differential Equations with Jumps”.
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2  Definition of Lévy Processes and Basic Examples

In this section, we give a definition of Lévy processes and describe Poisson processes, compound Poisson
processes and Brownian motions as basic examples.

2.1 Definition of Lévy processes

Definition 2.1 An R%-valued stochastic process (X;)i>o0 is a Lévy process if it satisfies that
(1) Xo =0 a.s.
(2) (X:) has independent increments, i.e., for 0 < to < t; < -+ < tn, {Xy, — Xop_, Jh<n are

independent.

d
(8) For s,t >0, X¢15 — X @ Xy, i.e., it is time homogeneous.

(4) It is continuous in probability, i.e., 't > 0,6 > 0, P(| X, — X;| <¢) = 1 (s = t).
(5) With probability one, each sample paths is right-continuous and has left-hand-limits, i.e., 7Qy €
F;P(Q) =1, Yw € Qo, (Xt (w))iz0 is right-continuous and has left-hand-limits as a function of t.

On the other hand, if it satisfies the conditions except the last one, then it is called a Lévy process
in law.

In §5.1, we give the result that a Lévy process in law is equivalent to a Lévy process, so the sample
path property is not essential. That is, if (Y;) is a Lévy process in law, then there exists a Lévy process
(X;) such that for V¢ > 0, P(X; =Y;) = 1.

The condition of continuity in prob. is equivalent to that at t = 0 by starting from 0 and by the time
homogeneity, that is,

Ve >0, 13%1P(|Xt| <e)=1.

2.2 Exponential times and Poisson processes

For a constant « > 0, a random variable 7 = 7(w) is distributed by an exponential distribution with
parameter « is that

P(r>t)= / ae”*ds =e ™
¢

as

That is, 7 has a distribution with a density function f(s) = ae™ In this text, we call 7 as a-

exponential time or simply, exponential time.

Its means and variance are the following:

~ V() =B - (Bl = o

(0% (0%

o0
E[7] :/ ase” “ds =
0
Question 2.1 Make sure the above calculation of variance.
Proposition 2.1 If 7 is an exponential time, then it has the following memoryless property.

Fort,s >0,
P(r>t+s| 7>s)=P(r>1t).

Proof. (t+s)
P(r>t+s) e Uts
P(r>t > 5) = = =e'=P(r>1).
(7 +s| 7> 9) P> s) g e (r>1)
|
Proposition 2.2 If 11, 7,...T, are independent oy, a, . . ., ay-exponential times, respectively, then

min{7y, 7a,...Tn} s (@1 + a2 + - - - + ) -exponential time. Moreover,

aj,
ottty

P(min{r,7o,...Th} =) =
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Proof. For simplicity, we only show the case of n = 2,k = 1.

P(ri AT} >t) = P(my > t, 75 >t) = P(1y > t)P(1y > t) = e~ (@1ta2)t,

Moreover, since the joint distribution of 71, 75 is the product of each ones by their independence, we have

P(min{Tl,TQ}ZTl) = P(T1<T2)

dsane” Y P(s < 72)

oo

dsa e “®

—Q28
e 2

— 5

ay

a1 + Qo

The other cases are the same.

Example 2.1 There is a system of two devices A and B. The time to failure of A is an l-exp. time
and the time to failure of B is an 2-exp. time. These are failure independent and the system is failure if

at least one is failure. Find the mean time to failure of the system.

By the previous proposition, the time to failure of the system is 3-exp. time, and hence, the mean is

1/3.

For A > 0, a stochastic process (X;);>o is a Poisson process with a parameter \ is a Lévy process
such that X; has a A\-Poisson distribution (it is simply called a A\-Poisson process), that is, it satisfies

the following:
(1) Xo =0,
(2) For 0 < s <t, Xy — X, has a Poisson distribution with a parameter A(t — s), i.e.,

A= 9)*

P(X,—X,=k)=c¢ o

(k=0,1,2,...).

(3) X: has independent increments. That is, for 0 < t; <ty < -+ <tpn, Xt,, Xt, — Xpyy oo Xt
are independent.

n

Theorem 2.1 (Construction of a Poisson process) Let 01,02,... be independent
A-exponential times. Let T, = 22:1 o and 79 = 0. Define

o0
Xi=n < 7, <t <Tpy1, thatis, X;:= an[Tn,7Tn+1)(t) = max{n; 7, < t}.

n=0

Then, (X:) is a A-Poisson process.

- th 1

Note The inverse of the above result holds, that is, if (X;)¢>0 is a A-Poisson process and let 71, 72, . ..
be jump times of it, then 71,79 — 71,73 — T2, ... are i.i.d. and each of them is a A-exponential time.

In order to show the above result, we use the following result.

Proposition 2.3 The sum of independent n-number of A-exponential times oy; T = Y ._, 0% is

distributed by the gamma distribution T'(n, \), i.e.,

t
1

P _ n_n—1_—As )

(T <t) /0 7@_1)!)\ s"T e Mds
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Proof. By the independence of (c,),
Ploy+-+o,<t)= / N Asitsn) ge o ds,.
S1+-sn <t

By the change of variables such that up =s1 + - s, (k=1,...,n) and s = uy,,

t Up uz
/ Ne Msitsn) ge o ds, / dun/ dun,1-~-/ dug \"e M
Syt <t
= / dun/ dtty_1 - / dusug A"e”
_ d " u 1>\n —Aunp
/o ! <n—1>' o

! 1 1 A
= /0 dSm)\ S €

[Proof of Theorem 2.1]. Since 7, is independent of 0,1 and distributed by I'(n, \), we have

PXy=n) = Pl <t<Tpt1=Tn+0ns1)

t
1 n. n—1_-—As
= /O dS WA S 16 )\P(t<8+0'n+1)

t
_ / ds 1 )\nsnflef)\sef(tfs))\

n t nn
= e_)‘ti)\ s"_lds:e_M—)\ ¢ .
(n—=1"J, n!

By a similar way,

P(Tn+1>t+8,Xt:’rL) = P(Tn+1>t+877’n§t<7’n+1)
P, +opp1 >t+ s, <t)

¢
1
= /0 du m/\”unflef)‘up(u +0opt1 >t+s)

' ny
= / du ;)\nun—le—)\ue—)\(t—ks—u) _ e_k(t""s)ﬂ_
0 (n—1)!

n!

Hence,
(2.1) P(Tpy1>t+s Xp=n)=e ™ =Plo, =1 > s).
Moreover,
(2.2)
under the condition Xy = n, 7,41 — t,0pn42,...,0n+m has the same distribution as oy, 09, ..
In fact,
P(Tn+1 — 1> 81,0p42 > 82,...,0n4m > Sm| X = TL)
= P(Tn <t < Tpatl, Tnel — > 81,0n42 > 82, -+, Opam > Sm)/P(Xy =n)

P(rp <t,Tpp1 —t > 81)P(0nt2 > S2, .., Ongm > Sm)/P(X: =n)
P(Tn+1 —t>s1| Xe =n)P(o2 > s9,...,0m > Sm)
= P(o1 > s)P(o2 > S2,...,0m > Sm)
= P(

01> 8,09 > 89,...,0m > Sm)-

- Om-
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By this and noting that 7,4 —t = (Tha1 — t) + Ona2 + -+ + Tnam, we have in general, for m > 1, we
can get
P(Tpim >t +s| Xy =n) = P(1y, > s).

By subtracting the above from the above with m + 1 instead of m, we have
P(Tn+m S t+ s < Tn+m+1| Xt = TL) = P(Tm S s < Tm+1) = P(Xs = m)

By using this, for n > 0,m > 1,

PXi=n,X¢i4s —Xe=m) = P(Xi=n,Xtys=n+m)
= P(X;=n)P(Xi1s =n+m| Xy =n)
= P(X:=n)P(Tnem <t+ s < Tnimst1| Xt =n)
= P(X;=n)P(X, =m).

By summing on n > 0,
AT ™
-2

P(XHS—Xt:m):P(XS:m):e ml

In case of m = 0, it can be seen P(X;s — Xy =m) = e~*%_and this is included in the above. In fact, by
Plr,>t+s| Xe=n)=P(r, >t+s| 7 <t <7py1) =0,
if we subtract this from (2.1), then

P(Xips=n| X;=n)=P(ry, <t+5<Tpp1| Xe =n) =e .

Thus,
P(Xt = ’I'L,Xt_;,_s - Xt = O) = P(Xt = ’I’L,Xt.i,.s = TL)
= P(Xt = n)P(Xt+S = n| Xt = n)
= P(X;=n)e .

Hence, by summing on n > 0, we have P(X;y, — X; = 0) = e,

Finally on the independence of increments, by using (2.2), we have for 0 < ¢; < -+ < tg,

P(XtU = no,th _Xto = Tll,...7th —th71 = nk)
:P(XtOZ’I’LO;th :no—l—nl,...,th:n0+...+nk)
= P(Xy, =no)P(Xe,—tg =11, o, Xpytyg =11 + -+ + nge)

Therefore, by repeating this, we have the following independent increments:

P(Xto = no,th — Xto =MN1,... ,th — th71 = ’I’Lk)
= P(Xto = nO)P(thfto = ’I’L1) e P(th*tk—l = nk)
= P(Xto = TLo)P(th - Xto = TLl) s P(th — th71 = nk)

2.3 Compound Poisson processes

Definition 2.2 (X;) is a compound Poisson process on R® if it is a Lévy process and the charac-
teristic function is given by the following: Let u; be the distribution of X;.

e (z) == E[ei<z’Xt>] = explte(o(z) — 1)],

where ¢ > 0 and o = o(dz) is a distribution on R? such that o({0}) = 0.
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te)”
Moreover, it also holds that pu; = e Z Qa"*. Note that 0% = §y. (It is clear because charac-

n!
n>0
teristic functions coincide.)

[Construction of a compound Poisson process] Let (IV;) be a ¢-Poisson process. Let (S,) be
a random walk on R? starting from Sy = 0, with a one-step distribution ¢ independent of (N;). Then,
Xy := Sy, is a compound Poisson process. In fact,

Ele!®5m)] = Z Ele'®5)|P(N, = n) = Z 8(2)"67’56% = explte(a(z) — 1)],

n>0 n>0

where for E[e!(9)] = 5(2)", we use that S, = > p_,(Sk — Sk—1) (So = 0), the distribution of S — Sk_1
is o0 and {Sg — Si_1} are independent.

2.4  Brownian motions (Wiener processes)

A real-valued stochastic process (B)¢>o is a Brownian motion is a continuous Lévy process (a Lévy
process with continuous sample paths) such that X; has a normal distribution N (0, 1), that is,

(1) By =0 as.
(2) (B) is continuous, i.e., for a.a.w, the sample path B.(w) is continuous.

(3) For 0 =ty <t1 < --- <tpn, {Bt, — B, , }1_, are independent and B, — By, , is distributed by a
normal distribution N(0,t; — tg—1).

The above definition is a one-dimensional Brownian motion.

If By = (B}, ..., B{) has d numbers of independent one-dimensional Brownian motions as components,
then it is called a d-dimensional Brownian motion. (It is realized as a product probability space of
d-numbers of independent one-dimensional Brownian motions.)

In this case (B;) satisfies the same conditions as above with the following (3)’ instead of (3);

(3) For 0 =ty < t1 < -+ <tyn, {By, — By, ,}}_, are independent and By, — By, , is distributed by
the d-dimensional normal distribution N (0, (t — tx—1)1q).

Let W = C([0,00) — R!) and let W be the o-additive class determined by the local uniform conver-

gence topology.

Moreover let w = w(t) € Wy & e W;w(0) = 0. For any finite number of time points t, =

(t1y. .y tn);0 <ty <ty < -+ < t, < oo and for any A, € B", C(t,, A,) = {w € Wy; (w(ty),...,w(t,)) €
Ay} is called a cylinder set). We denote the o-additive class generated by all cylinder sets as Wy (it is
known that this is the same o-additive class determined by the relative topology of W).

Theorem 2.2 (Existence and uniqueness of Wiener measure) There ezists a unique proba-
bility measure Pg on (Q, F) = (Wo, Wo) such that under this measure By(w) = w(t) is a Brown motion.

Pg is called the Wiener measure. The Brownian motion is also called the Wiener process.

We give the outline of the proof at the end of this section.

The distribution of d-dimensional Brownian motion B; = (B}, ..., B) is a probability measure on
W¢ 3 w;w € C([0,00) — R%),w(0) = 0, and this is called the d-dimensional Wiener measure.

The distribution of By is given as P(B; € dx) = pi(z)dx, where

1
pe(x) = ——e 1l (x=(21,...,24) e RY, || = (/a2 +--. + 22).
\/27Ttd

g¢(x) is a density function of d-dimensional normal distribution Ny(0,t).
The characteristic function of this normal distribution if given as

0(2) = 9B, (2) = Ele*Pt] = e7/2 (2 e RY),
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where 2 - By = 21B} + - -+ + 24 B{.
In one-dimensional case, let

1 e
pe(x,y) =p(y — ) = \/te (y—=)?/(2t)

V2t
Then the finite dimensional distribution of the Brownian motion is given as follows: for 0 < t; < ty <

- < t, and A € B,

P(B,, € Ay) :/A dy1pt1(0,y1)/A dy2pt2—t1(ylvy2)"‘/ AYnDt,—t— Yn—1,Yn)-
1 2

n

In fact, by the independent increments letting tg = 0, we have
P(Bi, — By, , € A, k=1,2,..., H/ Diy—ty_, (21T
Ay,

and by the change of variables zx = yr — yr—1 (yo = 0) we get the above equation. Here note that
{Bi, € A1,B, € Ay} == {By, € A1, By, — By, € Ay — A1} where Ay — A; is a family of differences of
elements, and this is not the difference set . As \ A

In the following let (F;) is a standard filtration by the Brownian motion (B;).
[Properties of Brownian motions]

(1) EB?" = (2n — 1)!t", EB" ' =0 (n > 1).
(2) For 0 < s < t, By — By is independent of Fj.

This is equivalent to independent increments. From this (B;) is martingale (described latter), i.e.,
0<s<t= E[B,— Bs| Fs]=0

(3) The covariance E[B;Bs] =t A s (s,t > 0).

s] _ 67(t75)22/2,

(4) A continuous process (X;) is a Brownian motion <= Y0 < s < t, E[e’*(Xi~
where (F;) is the canonical filtration by (X).

(5) The Brownian motion is invariant under the following transforms (a > 0 is a fixed):
Bta = Ba+t - Baa E Btv ( )t = \/>Bt/a7
where S%(B); is called a scale conversion or scaling.

(6) The total variation of Brownian motion in [T}, 75] is infinite a.s., i.e., denote a division as A =
{t};Th =tg < t1 <- < t, =Ty, then

V= szpz |Bi, — Bi,_,| =0 as.

(7) Ye > 0, (By) has (1/2 — ¢)-Hodler uniform continuous paths a.s., i.e, for all v > 0,

B
lim  sup g:Oorooa.s. ify<1/20r~y>1/2.
h—=0 g2, [t—s|<h ‘t - s|’)’

(8) Sample paths of Brownian motion are not differentiable at every time points a.s.

(9) Let (B) be a d-dimensional Brownian motion and T be a d x d orthogonal matrix. Then (T'B;) is
also a Brownian motion. Moreover, let 75 := inf{t > 0; B; € S = S97'} be a hitting time to the
sphere BRI S = 9B%(0, 7). Then the distribution of By, = B,(.)(w) is the uniform measure on S.

Furthermore, the Brownian motion (B;) has the following properties:
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e X; =1By; is also a Brownian motion with Xo = 0.

* B
lim su -t =1

t10 P \/2tloglog(1/t)

Moreover, by symmetry, liminf; o is —1, and by scaling,

. By
lim sup a.s.

I A—
ttoo V2tloglogt

e Ve >0, (B;) has (1/2 — ¢)-Hodler uniform continuity a.s. as mentioned, more precisely, it satisfies

the following:
. |B; — Bs|
lim sup =1
h=0 szt ft—s|<h /2|t — s]log(L/[t — s|)

[Construction of Brownian motions] It is well-known that there are 3 ways, however, we give
the simplest way.

It is enough to show the case of ¢ € [0, 1]. Because the case of [0, T] is the same, and by the uniqueness
it is possible to extend to [0,00). Let D = J,,~,{k/2";k = 0,1,...,2"} be the family of all binary rational
numbers in [0, 1].

First, by using Kolmogorov’s Extension Theorem to the probability space on R*°, a probability
Py can be constructed on RP (3 w = w(t) : D] — R is a function) such that the every finite dimensional
distribution of X;(w) = w(t) is the same as the Brownian motion.

Furthermore, it is possible to show that (X;) satisfies the conditions of the following Kolmogorov’s
Continuity Theorem. Hence, (X;) is uniform continuous on D a.s., and Yt = lim,+,rep X, is contin-

uous. Thus, By = )/Zt is the desired one.

Theorem 2.3 (Kolmogorov’s Continuity Theorem) (1) In general, a stochastic process
{X:}tep which is in a Banach space (B, || -||) satisfies

C,a,8> 0, || X — X, }* < Clt — s|'7,

then X, is uniform continuous on D a.s.
(2) If {Xt}ieo,1) satisfies the above inequation for Vs, t € [0,1], then there exists a continuous modi-

fication {Z}tG[O,T] uniquely, and it is y-Hélder uniform continuous a.s. for ¥y < B/a; i.e.,
) X, - X _
im sup ——— =
h—0 s#t;|t—s|<h |t - S|

If readers want to know the proofs of the results in this section, please see the text of stochastic
analysis; “Ito integrals and Stochastic Differential Equations with Jumps”.

Here, we give a several results with respect to characteristic functions, which are needed from the
next section.
Let P(R?) be a family of all probability measures on R%, i.e., distributions on R.

A characteristic function=c.f.; ji(z) := / e"*?) i (dzx), and a convolution of y,v € P(RY):
R4

prr@yi= [ v nutdetan) = [ wa=pis) = [ A=),

Then, it is easy to see fi * v(z) = fi(2)P(z). The distribution of a sum of independent random variables
is a convolution, i.e., if RV’s XY are independent and their distributions are pu, v, respectively, then the
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dist. of X +Y is u*v. Because the c.f. of X +Y is D = g * 7, i.e., E[e?*XTY)] = e/ X E[e!=Y)] =

A()9(2),
Note that p € P(R?) can be expressed by fi (Lévy’s inversion formula, So  is determined by i
uniquely, that is, if & = 7, then p = v (uniqueness theorem).

We also describe the results related with the convergence of characteristic functions and distributions
(for their proofs, see the text “Basics of Probability Theory”).

Theorem 2.4 Let ji, it € P(RY). If pin, — i, then fi, — i (uniform on compact sets).
def
Note that u, — p <= Yf € Co(RY), pn(f) := [ fdpn — p(f).
Theorem 2.5 (Lévy’s Continuity Theorem) Let i1, € P(RY). If Pp; fi,, — ¢ (pointwise) and ¢
is continuous at the origin, then p € P(RY); ¢ = [i, pn — u, Moreover, i, — Ji (uniform on compact

sets).

Corollary 2.1 (Glivenko’ Theorem) Let yu,,pn € P(R?). If fi,, — 1i (pointwise), then ji, — fi.
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3 Lévy Processes and Infinitely Divisible Distributions

The distribution of a Lévy process has a property of infinitely divisible. By this property as a character-
izing the characteristic function, it is possible to give the Lévy-Khintchine formula.

3.1 Infinitely divisible distributions

Let P(R?) be a family of all probability measures on R?, i.e., distributions on RY.

Definition 3.1 p € P(R?) is an infinitely divisile distribution if "n > 2,7y, € P(RY) : p =
W, e, = . The family of all these distributions is denoted as I(R?).

This is equivalent to that if we denote the characteristic function of p as fi, then Yn > 2, G'/" is a
characteristic function, where n-root of fi; fi'/" is determined by the following.

A uniform distribution and a binary distribution are not infinitely divisible. An infinitely divisible
distribution with a bounded support is only a § distribution.

In the following, we give several properties of infinitely divisible distributions.
If € I(RY), then 11 # 0.
(Pr.) By the definition; ," = i,
() = lim |in(2)]> = lim |a(=)]>"
n—roo

n—oQ

= Liaz)203-

If we set pu_(dx) := p(—dz): a dual of y, pg := pu* u_: a symmetrization of y, then i = ji(—-) = [,
uz = |1i|%. By 7i(0) = 1 and the continuity of /i, we have ¢ = 1 on a neighborhood of z = 0. Hence, by
Lévy’s continuity theorem, ¢ is also a characteristic function, and thus, it is continuous on R%. So ¢ = 1
and i # 0.

- For each pu € I(R?), 31 f(2) : RY — C: continuous; f(0) = 0,7i(z) = e/*), and "n > 2,319, (2) :
R? — C: continuous; ¢,(0) = 1,¢,(2)" = Ji(z). From now on, we denote as f = logfi, g, = u'/"
(g9, = ef/™). By these we can define i = exp[tlogfi] and when this is a characteristic function (it is

=

actually true), denote the distribution as p**. Then ut* = it holds.

(Pr.) We can show in more general by changing fi to ¢ : R — C; ¢ # 0,(0) = 1. Fix any z € R¢
and for t € [0, 1], we choose a branch h,(t) = log|p(tz)| + iarg ¢(tz) of a complex function ¢(tz) such
that h,(t) is continuous and h,(0) = 0. h,(t) is unique and arg ¢(tz) is a chosen argument such that it
is continuous and 0 if t = 0. We define f(z) = h,(1) = log|p(z)| + iarg (z) and show the continuity
of this. Fix zg, and for z # zg, let w,(¢) : [0,3] = A(0, 20, 2) be continuous such that w,(t) = 0, 2o, 2,0
if t =0,1,2,3 and having the triangle graph of 0, 20, 2. Since {p(tz0);t € [0,1]} is compact and ¢ # 0,
ii has a positive distance to 0. If 2 — zq, then maxo<;<1 |¢(tz) — p(tz0)| — 0. hence, 7U(z0): a nbd of
z0; "2 € U(zp), the rotation number of the closed curve {p(w,(t));t € [0,3]} around of the origin is 0.
Thus, arg ¢(w.(3)) = 0. Therefore, Im f(z) = arg p(z) = argp(w.(2)) (Yz € U(z)) T and if z — 2o,
then Im f(z) — Im f(20). The continuity of Re f(z) is clear. So f(z) is continuous. On the other hand,
if f(z) is continuous; f(0) = 0,ef() = (2), then by the uniqueness of h., we have h,(t) = f(tz) and
f(z) = h.(1) = f(2). Moreover, for n-root g, of fi, it is a similar. [ |

. For/u € I(R%), the distribution s, such that u = pu* is unique and satisfies i, = 7i'/", That is,
= ,ul nx

(Pr.) By i # 0 and the result in the above proof, it is clear. ]

i € I(RY) — = p € I(RY).

(Pr.) For Yk > 2, it is enough to show [i'/* is also a c.f. . We first show i # 0. fi,, — fi implies
|fin|?/% — |?/*. Since |fi,|>/* = \ﬁ}/k|2 is a char.ft and |7i|?/* is continuous, this is also a char.ft. Hence,
the distribution with the c.f. |fi|? is in I(R%). Thus, i # 0. Therefore, as in the above, fi'/* exists
uniquely and it is continuous. By i, — 1, ﬁ;l/k — [i'/%. Hence, i'/* is also a c.f. ]
If py, pe € I(RY), then py * g € I(RY).

(Pr.) By p1 = (p1,0)" s p2 = (p2,0)™", we have piy * pio = (pi1,50 % p2,n)™" u
If € I(RY), then "t > 0, u** is defined and p** € I(R%).
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(Pr.) By pt/™ = (p/tm)r ¢ [(RY), p/™ € I(R?). Letting 7, € Q4 — t > 0, we have
i — fit, and since [i* is continuous, 1, € P(RY); iy = it. Therefore, u** € I(RY). [ |

Theorem 3.1 Let (X;) be a Lévy process in law. The distribution of Xy is py = P o X; ' € I(R%)
and if it is denoted as p11 = p, then p; = p**. On the other hand, if i € I(RY), then 3(X;): a Lévy process

d
in law such that X @ ut* and this is unique except equivalence in law, that is, if (Y;) satisfies the same
conditions, then it is equivalent to (X;) in law, i.e., they have the same finite-dimensional distribution;

(d)
(Xt17Xt2)"'ath) = (}/151?}/1‘,27"'?}/1‘4”)'

n

Proof. For ¢t > 0, set t} = kt/n. tj = 0 and by Xo =0, X; = Z(Xt? — Xiz_,), and independent
k=1
increments and time homogeneity imply u; € I(RY). By X; W = € I(RY), Xy, W Pijn = plt/
and X, /p @ ™/ ™% Hence, approximating by rational numbers, we have Yt > 0, X; @ ut*

On the inverse, in order to show the existence of Lévy process in law corresponding to p € I(R?), we
use the following Kolmogorov’s Extension Theorem. For 0 < t; <ty < ---<t,, B € BL, k=1,2,...,n
we define

Mty ..., tn(Bl X e+ X Bn)

- /Rﬂtl*(dyl)lBl(yl)/Rﬂtrtl*(dm)le(yl +y2)"'/R/‘t”_t"”*(dyn)ll%n(yl oY)

s+tx*

This satisfies the consistency condition by u* * u** = p Thus, 7' P: a probability measure on

Q = (RH0); for X;(w) := w(t), X; @ pt*. Moreover,

{ DB CINT CHED el 1> H/ (2K, Yk Mtk tr_ *(dyp) H {i(zk,th—th,l)]

and hence, (X;) has independent increments. (The last equation can be obtained by letting 0 except zy
in the previous equation. Furthermore, the continuity in probability is clear, by the following: as t | 0,
P(|Xi| >e) =0 <= s — 6y = 1i(2)" =1,
and u € I(R?) has no zero point. Finally, if (Y;) satisfies the same conditions, then X; — X, w
(d) s @
}/t _YS = ,u‘t and (Xt07Xt1 _Xt()7"'ath _thfl) ()/toaYtl Ytov"'aYtn _}/tn71)' HGHCG,

(d)
(Xt07Xt1""’th) = (l/tm)/hw'w)/tn)' u

Theorem 3.2 (Kolmogorov’s Extension Theorem) Let Q = (R%)[0®) 5w and X;(w) := w(t).
Let F be a Kolmogorov o-additive class, i.e., o-additive class generated by all cylinder sets; C = {Xy, €
By, k =,1,...,n}. For every 0 < t1 <ty < --- < t,, distributions p, ..., on B((RH™) are given and
satisfy the following consistency condition: For By,..., B, € B!, if B, = R? for one k =1,2,...,n
then
Pyt (B1 X oo X By) = pig, ., tk_l,tk+1,...,tn(B1 X oo X Bp_1 X By X -+ x By)

Under the above conditions, > P: a probability measure on (0, F); (Xty,---, Xt,) = Hty... .1, -

The proof is that on a total family of cylinder sets C, we define Q(C) := pey,....t,,(B1 X -+ X By) for C =
{X¢, € Bi,k=,1,...,n} € C. Then, Q :C — [0,1]; Q((Rd)[o"’o)) = 1 and satisfies finite additivity. Thus, it is
sufficient to show the continuity at 0, i.e., if A, € C; A, | 0, then Q(A,) — 0. (Because, by the extension theorem
of measures, there exists a unique probability measure P on F = ¢(C) such that P = @ on C.) On the continuity
at 0, if we assume Q(A,) | § > 0, then by the regularity of s, ...+, , we can take a compact set of By X --- X By
and we can show that () A, # 0. This contradicts.

For details, see I. Karatzas & S. E. Shreve, “Brownian motions and Stochastic Integrals”, Springer
(1988, 1993).

.....
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3.2 Lévy-Khintchine representations

Theorem 3.3 (LK representation) (X;) 2% is a Lévy process if equivalent to that 't > 0, the
characteristic function [iy(z) := E[e"*X:)] (i = /=1) of X; has the following Lévy-Khintchine (LK)
representation: [i;(z) = e*¥(*);

1 ; . .
U =~z b [ 1 i)y lda) + i),
Rd

where
- A= (aji)jk<d 15 a non-negative definite symmetric matriz.

This is equivalent to that o = (09)e<m.j<d; Gjk = Y y<pm 030% (= the next Question).
v =v(dz) is called a Lévy measure on R satisfying that v({0}) = 0 and

d(l A lz|*)v(dr) < oo.

-y = (7j)j<a € RY,
This triplet (A,v,~y) is determined uniquely.

If v satisfies /

lz]<1

1 )
|x|v(dz) < oo, then ¥(z) = —§<Az,z> +/ (%7 — 1)u(dzx) +i(y0, 2), where
Rd

Yo=17— / zv(dz) and vy is called a drift.
|z]<1

Question. Show the above expression of A.

Let U = (ujkx) be an orthogonal matrix diagonalizing A, and its eigen valued be A\x > 0 (k < d). Since
tUAU = diag (M), ie., A = Udiag (\)'U, we have ik = Y peq MUjeUke. If m number of eigen values are
positive, i.e., for £ < m, let Ax, > 0 and for each j < d, set az = \//\T[um. Then we have a;x =Y, aéaéf.

In other words of p, the above theorem is equivalent to that
peIRY) — fi(z) = e¥®

In the characteristic function of a compound Poisson distribution

v(2) = logfi(z) = - 1) =c [ ()~ 1o(dr)

R4

if weset A=0,v =co and vy = c/ xzo(dx), then we have the LK representation.
lef<1

[Proof of LK representation].

We first show there exists a distribution with this characteristic function ¢ := e¥ and it is an infinitely
divisible distribution.

Let 1, be ¢ without jumps of |z| < 1/n. Then ¢,, = e¥" is a characteristic function of a convolution

of a Gaussian distribution and a compound Poisson distribution. Hence Zu,, € I(RY); im = @n — .
Since ¢ is continuous, “*u € P(RY); i = ¢. Therefore, y,, — p and p € I(RY).

Next, on the uniqueness of the representation, let ¥(z) = log (z) have the representation by (A, v,~).
Since

1 . 1
S—2|ez<sz’9”> —1—i{sz,x)| < §|z|2|x|2, =0 (s = 00),

by Lebesgue’s convergence theorem,

lim i1&(32) = —%(z,Az).

s—o0 §2
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Hence, A is determined by g and unique. Let 14(2) = 9(2) + (2, Az)/2 and set C = [~1,1]%. It can be
seen that

d
/C(T/Jd(z) —Yq(z +w))dw = / e"®®) p(dx)  with p(de)=2% 1 - H

R j=1
By this and by p(dz) < C(1 A |2|*)v(dz) (— the next question), p is a finite measure and its Fourier

transform is the above equation. Thus, p is determined by 14, that is, v is determined by g uniquely.
Therefore, « is also unique. On the above transform, set D = {|z| < 1}, we have

[ wate) = vale + wdw = [ dw [ (@600 =0 i )1 (@)lde)
c c R¢
and on D by adding and subtracting i(w, z)e*(**) we have
, _ . A 1
|5 — T i(w, )| < 1= ) pifw, 2))| + fiw, 2) (5 — 1)] < Slwl’lel® + ]|zl

Hence, it is possible to change integrals on dw and v(dz). Furthermore, by

/ (ei(z,z> _ ei(z—i—w,m) + z(w,x)lp(x))dw _ ei(z,m) / (1 _ ei(w,m))dw _ 2d6i<z7fp> 1— H SN T ;
c c =1 Y
we can get the desired equation. [ |
Question 3.1 Show that if |x| < 1, then 1 — H Sm‘xj < Oz
j=1 "

If 2 > 0, then sinz > 2 — 2 /3!. Hence, it is clear in case of d = 1. In genral cases it holds by the following:

d . d . k—1 .
1 H S T o Z 1 SIN T H SN Ty
ZTj Tk T

j=1 J k=1 j=1 J

[Proof of the possibility of the representation].
We define a compound Poisson distribution pu,, by

in(2) = exp[n(fi(z) /" —1)] = exp [n /Rd\{o}(eiz'x — Dt/ (dx)

(note that x'/™*({0}) may not be 0, however, it we restrict this to R?\ {0} and denote as v,,, then we
may change them and it is also a compound Poisson). As n — oo,

n(z) = exp[n(erf1 logi(z) _ 1)] = exp[n(n~'logfi(z) + o(1/n)] — fi(2)

implies p, — p. Since pu, has a LK-representation, and by after the next convergence theorem, p has
also a LK representation. [ |

From the above proof, the following holds.

Theorem 3.4 An infinitely divisible distribution are expressed as a limit of a sequence of compound
Poisson distributions.
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In order to treat easily, we introduce the following 2nd LK representation (A,v, 8) : Let (x) be a
function on R? such that which is 1 for |z| < 1, 0 for |#| > 2, and has a graph connected by line segments
between them. )

P(z) = —§<Az, z) —l—/ (%57 —1 —i(z,2)0(x))v(dz) +i(B, z).
RA
We simply call an (A, v, §) representation.

The 1st representation and the 2nd representation are equivalent and it can be rewritten to each

other.

Theorem 3.5 (Convergence theorem of LK representations) If each p, € I(RY) has an
(A, Un, Bn) representations, then for a distribution u on R?, p, — p is equivalent to the following:

p € I(R?) has an (A, v, B) representation and for all bounded continuous functions f such that f =0
on a neighborhood of the origin,

lim f(@)vp(dx) = " f(z)v(dx).

n—oo Rd

Moreover, for Ve > 0, if a non-negative definite symmetric matriz A, . is defined by

(2, Anez) = (2, Anz) + / (x.2)2vn(dr) ("2 € RY),

|z|<e

then lim limsup(z, A, 2) = limliminf(z, A, z) = (2, Az). lim,_,o Bn = 8.
el n—ooco el0 n—oo

Proof. (=) We show if p, has 2nd representation and 1, — u, then p has also and each coefficients
satisfies the convergence condition. At first, 4 € I(R?), and since fi(z) has no zero points, 1(z) = log ji()
exists and by the convergence theorem of characteristic functions, we have 1, (2) = logi,(z) — ¥(2)
(uniform on compact sets). Let g(z,z) := ¢“*%) —1 —i(z,2)0(z). Then,

Yn(2) = —%(Anz,@ + /Rd g(z, 2)vp(dz) + i{Bn, 2).

If we set py,(dz) := (1 A |2|?)v,(dz), then it can be shown that

(3.1) sup pn(RY) < 00,  lim supp,(|z| > L) = 0.
n L—oo p

This means “tightness” of {p,} and it is equivalent to be relatively compact in case of probability
measures, however, it also holds in case of finite measures. Hence, F{n}; pn, — “p: a finite measure.
Let v(dx) := (1A |z]*) 1z 20yp(dz) and for € > 0, if we set

I5,(2) = /| A0 (),

o= [ @)+ 560 A ) (),

then

Yn(2) = —5{Anez,2) + () + Tin(2) + (B, 2)

In the following, n is ng, and letting n — oo (i.e., k — 00) and for p-continuous € > 0, i.e., p(|z| =
) = 0 (precisely, this means {|z| < £} is a p-continuous set.) letting € | 0, it holds

(3-2) I (2) — 9(z,x)v(dr) — | g(z,z)v(dr).
’ n—00 |z|>e 0 Rd
On the other hand, for ¥z, since |g(z, z) + (z,x>2/2‘(1 Alz|?)~t < |2[3]x]/3! = 0 if |x] < & — 0, then by
sup,, pn(R?) < 00, we have
lig]lsup |15, (2)] = 0.
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Hence, by dividing 1, (2) to the real part and the imaginary part, we have

el koo el0 k—oo

limlimsup(z, Ay, -2) = limliminf(z, A,, .z) € R, limsup(8,,,z2) = likminfwnk,@ R
k—»00 —00

and each can be expressed by “A; (z, Az), 3;(B,2) (— the next question). These imply ¢(z) has an
(A, v, B) representation and it is unique. The convergences of coefficients hold for a sub-sequence {n;}
and for p-continuous €. However, the restriction of € can be omitted by monotonicity of integrals, and
by the uniqueness of the representation of v, it holds that for any sub-sequence of {p,}, there exists a
convergence sub-sequence and the limit is p, and hence, this implies p,, — p. Therefore, every convergence

of coefficients holds for n. It remains to show (3.1). Set C(h) = [~h,h]? and A,, = (a (n)) We have

1 n
- Up(2)dz = §Za§j)/ zf-dz—/ un(dx)/ g(z,z)dz
c(n) < c(h) R c(h)
_ 2d 1hd+2z:a(n)+ 2h) /

j<d R

1 H sin hx vn(dz) > 0.

d hIJ

For a fixed h > 0, (LHS) — — ¥ (z)dz as n — oo, and hence, they are bounded. Moreover, by
c(h)

d .
sin hx;
inf [ 1— Ll (@A)t >0
(1T 5 | ke >
j=1
(— the next question), {p,} is uniform bounded. By the above equation and Question 3.1, as h | 0,
1

any o Yn(z)dz — 0.

Thus, Ye > 0, 7ng, ho; "n > no,
4 sinhox
0-Yj
1- —— | v (de) < e.
/Rd [] s | vetae) <<
If || > 2v/d/hqg, then jo; |x;,| > 2/ho and noting that

sin hox ;
1— e
H hor,

Jj=1

S ho T jq

h()xjo

we may assume hy > 0 is sufficiently small and we have
1

Pn <|x| > 2\/&//10) =5Vn (|x| > 2\/E/ho> <e (n>mng).

Therefore (3.1) is obtained.

(<) We show p,, — p from the convergences of coefficients. Let p, be the same as above and set
p(dx) = (1A|z]?)v(dz). Let € > 0 be p-continuous and letting € | 0, by the assumption of the convergence
of v,,, we have the convergence of I7 ,(2); (3.2). Moreover, by the convergences of v, and A, ., we have
uniform boundedness of p,, and hence, lim. o sup,, |15 ,,(z)| = 0. Therefore, by considering the real part
and the imaginary part of of 1, (z), we have ¥, (2) = ¥(2), i.e., lin(2) — [i(z) and we get the result. W

Question 3.2 Show that if a symmetric matriz A, is non-negative and ¥z, 3 lim(z, A, z), then FA: sym-
metric and non-negative; im(z, A, z) = (z, Az).

Question 3.3 Show

d .
sin ha ; 1
inf [ 1— VANt >0(h>0) and —— Un(2)dz — 0 (h ] 0).
0 E | (L) (h>0) B Sy V) (h10)

(Let d = 1. Use if z > 0, then sinz < z — 23/3! + 2°/5! and consider |z| < 1,> 1.)
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4 Important Examples of Lévy Processes

We gave basic examples in §2. in this section we describe stable processes and L-processes (self-
decomposable processes) as important examples.

4.1 Stable processes and stable distributions

A strictly stable process with exponent 0 < o < 2 is considered as an extension of a Brownian motion to

d

a Lévy process. This has the same type scaling property as a Brownian motion That is, X; @ t/e X,
If @ = 2, then it is a Gaussian process with mean 0. Moreover, adding a drift, it is simply called a
stable process. Their distributions of each time points are called a strictly stable distribution, a stable

distribution respectively.

Definition 4.1 A stochastic process (X;)i>0 on R® is called a stable process if it is a Lévy process
and satisfies that Ya > 0,7b > 0,c € RY; (X4) and (bX; + ct) are equivalent in law, i.e., they have the
same finite-dimensional distributions. Moreover, if it can be taken as ¢ = 0, then it is called a strictly
stable process.

Furthermore, the distribution of X1 is called as a stable, strictly stable distribution, respectively.

If X; =+t a.s., then it is called as a trivial Lévy process. Obviously, this is a strictly stable process.
If a stable process is a non-trivial Lévy process, then it is called a non-trivial stable process.

Theorem 4.1 A non-trivial Lévy process (Xi)i>0 on R? is a stable process <= "t > 0,7'a; >

d ~ ~ ; -
0,b, € RY; X, @ as X1+ by, i.e., 1i(2)t = fi(arz)e®t*. Moreover, if it can ge taken as by = 0 for allt > 0,
then it is equivalent to that it is a strictly process.

Proof. Since Ya > 0,7b > 0,7c € R?; (X,4;) and (bX; + ct) are equivalent in law, letting t = 1,a = t,
it is clear that Y¢ > 0, 3ay, by; Xy @ a; X1 + b;. The uniqueness follows from that for a non constant RV

X, letting aX 4+ b @ aX —i—E we have a = a,b = b. In fact, let aX + b @ X and it is enough to show

a = 1,b = 0. (because if @ # 0, then a~'(aX + b — b) @ X). If Xy, X5 are indep. and @ X, then
(d)

a(X, — Xo) = (aX; +b) — (aXo + ) 2 X, — Xp. Thus, "n > 1, a®[ X1 — Xo| L |X; — Xo|. Ifa # 1,

d
then X7 — Xo @ 0 and this implies X is a constant a.s. This contradicts. (— the next question). Hence,

a = 1. Moreover, we have X @D x +nb (Yn). This implies b = 0 (— the next question).

About the inverse, for Ya > 0, By X, @ aq X1 + by, letting b = a,,c = b,, we have X, @ bX, + ¢,

and (Xg;), (bZ; + ct) are both Lévy processes and they have the same distribution at ¢t = 1. Hence, they
are equivalent in law, and therefore, it is a stable process. For the strictly stable, it is obvious. [ |

Question 4.1 Show that if X1, X5 are indep. and X1 — X5 (i) 0, then X1 = X5 =const. a.s.

Show that X C X + nb (Yn) implies b = 0.

(Ans.) By P(X; — X2 = 0) =1, X; = X5 a.s. and they have the same distribution p. The
characteristic function of X7 — X5 is |fi(2)|?> = 1 and the following give the desired result.

- |fi] = 1 (on a nbd of the origin), then 7y € R% u =6,

In fact, it is enough to show the case of d = 1. For z # 0 in a nbd of the origin, “v,;[i(z) = €¢?=. Thus, the
support of p is in = (v, + 2nw)/z. If the support has two points z1 # x2 at least, then |x1 — z2| > 27/|z|.

However, this contradicts.
In case of X &2 X +nb ("n), if we assume b # 0, then by taking a small set 7A4;d := P(X € A) > 0.

Therefore, we have 1 > P(X € |J,,»;(A+nb)) => -, P(X € A4+ nb) = 00§ = oco. This contradicts.
Hence, b = 0. B -

Theorem 4.2 (Existence of Exponent of Stable Process) If (X;) is a non-trivial stable pro-

cess, then F1a € (0,2]; Yt > 0,71b, € RY; X, @ X + by, dce., fi(2)t = At z)e 0
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If (Xt) is a non-zero strictly stable process, then 3'a € (0,2]; "t > 0, X, @ e Xy, de., i(z) =

att/ez).

Definition 4.2 The exponent 0 < a < 2 in the above theorem is called an exponent of a non-trivial
stable process or a non-zero strictly stable process, respectively.

An exponent of a stable distribution except §-distribution, or a strictly stable distribution except &g, is
defined by the corresponding exponent of a stable process or a strictly stable process.

Note that for a non-zero trivial strictly stable process the exponent is 1, however, the exponent as a
stable process is not defined.

a Brownian motion on R¢ is a strictly stable with an exponent 2, and a non constant Gauss process
is a stable with an exponent 2.

[Proof of Theorem 4.2].
We first show the existence of an exponent for a strictly stable process (Y;). Let n = P oY, !. Since

for V¢ > 0,%1a;, > 0; Y] @ a;Y1, we have 7(z2)" = 7j(a;2). For s > 0,

Masez) = 0(2)" = ([((2)")" = (arz)® = fasa:z).
By the uniqueness we have as; = asa; and a; = 1. moreover, the continuity of a; in ¢ > 0 can be shown.
Hence, 73;a; = t? (see the next question), Moreover, 3 > 0 can be also shown. Hence, we may set
a :=1/8. The uniqueness of a; implies the uniqueness of a.

On the continuity of at, if we let ¢, — t, then 1(as, z) = N(2)'» — 7(2)" = N(a¢z). If a,, — 0, then
M(z)! =7(0) = 1 and Y = 0 a.s. This contradicts Y # 0 as. If a, — oo, then 7)(z) = 7j(a; '2)i» —
7(0)! = 1, and this contradicts. If a;, — a € (0,00), then we have 7j(az) = 7(2)" = N(a;2) and a =
by the uniqueness. Therefore, we see the continuity and 0 < a; < oo (more precisely, if we consider
lim sup, lim inf and take sub-sequences with the same limits respectively, then all the above hold for these
sub-sequences. Hence, both limits are the same as a; € (0,00)). Moreover, we have a; = t7. If 3 < 0,
then a; — oo as t | 0 and this contradicts as above. If 3 = 0, then a; = 1, 7)(2)* = 7)(2) and by letting
t } 0 we have 7j(z) = 1, this contradicts. Thus, 8 > 0. Therefore, we can set o := 1/5.

In case of a stable process (X;), by considering the symmetrization V; = X, — )?t, where X; @ X,
and indep. of X, the previous theorem implies ¥t > 0,7a; > 0,b; € R%; X4, )~(t @ a; X1 + by and they
are non-trivial. Hence, (Y}) is a non-zero strictly stable process. Therefore, the desired result is obtained
as follows; Let X W w, Y1 @ n. We have 7(z) = |ji(z)|? and
)P =0(2)" = (¢ 2) = |at/*2) .

Hence, 7b, € R%; a(z)t = eiz'l;‘ﬁ(tl/"z) and the uniqueness of b in the previous theorem implies b, = b,.
It remains to show o < 2. Let (A,v,7) be a triplet of u and we define v; by v;(dx) := v(t~'/*dz).
Since the c.f.s of t/*X; + b, and X, are the same, we have

tA=1t"A, tv=u

(we also have t'/%y 4+ b, = tv, i.e., by = (t —t'/*)7). Hence, if a # 2, then A = 0. Moreover, if a > 2,then
by 1 —2/a >0, z=t"Y" and v(t~*dzx) = v;(dx) = tv(dz), we have Ya > 0,

/ |z|?v(dz) = t_Q/O‘/ lz|2v(t~ Y dx) = t1_2/“/ |z|?v(dz) — 0 (t | 0).
|z[<a |z|<tl/aq lz|<tt/oq
Thus, v = 0. That is, X7 = b; + v and this contradicts X; is non-trivial. Therefore, o < 2. [ |

Question. Show that if a; > 0 is continuous in ¢ > 0 and satisfies as; = asa; and a; = 1, then
Brar =t

B

. 1 .
Let B8 :=1logae, i.e., €® = ac. "t > 0, azn = a} and Qp1/n = at/" by ai,, = a;. Hence, Vr e Q,ar =aj. The

Bz Blogt _ 4B

continuity implies "z € R, asz = af. Set e® =, then a; = aer = a® = e’ =¢

The following result can be shown by using the notion of “type equivalence”. However in this text, we
omit the proof.
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Theorem 4.3 3(S,,): a partial sum of i.i.d. RVs {Zy}, i.e., a RW (random walk), If 2a, > 0,b, €
R%; a, S, +b, — p in law, then u is a stable distribution. On the other hand, the inverse holds, i.e., if p is

d
stable, then it is a limit distribution of the above form, more exactly, let Zj @ i, then 3a, > 0,b, € RY;

an Sy + by, @ 7

In the next, we consider the representations of characteristic functions of stable distributions.

Theorem 4.4 (Representation of Stable Distribution) Let u € I(R?), # §, with a triplet
(4, v,7).

(1) w is a 2-stable distribution <= v = 0.

(2) Let 0 < a < 2. p is an a-stable distribution <= A = 0, 1 \(d€) # 0: a finite measure on
S = Sdfl’.

v(dx) :/SA(dg) /OOO Lax (r&)r—tdr.

That is, u has the following 1st representation: fi(z) = e/¥(*);

P(z) = /S)\(df) /000 (e“z’r£> —-1- i(z,r§>1(0’1)(7“)) P e 4 iy, 2).

Moreover, it has the following 2nd representation: For z = |z|¢ € RY,

in case of a # 1,
0(2) = —J21° [ (1= tan Thsen (6.9) 16.O1°AE8) + (0. 2).
in case of a =1,

62 = =12 [ (1t6.01+ 216, og (2,00 ) ) + i, 2).
S ™
In these representations X\, v,y are unique.

The following is immediately obtained:

Theorem 4.5 (Representation of Strictly Stable Distribution) Let u € I(RY), # & and 0 <
a < 2.
W is an a-strictly stable distribution <=

(1) If o =2, then p is a non 69 Gaussian distribution with mean 0.

(2) If0 < o < 2, then u has the following 1st representation: 7' \(d€): a finite measure on S = S9~1;
A # 0 if a # 1 and satisfying that

(1) in case of 0 < av < 1,
1(z) = exp {/S )\(df)/o (e“'z”'§> -1- i(z,rf}l(o,l)(r)) r_l_“dr} ,

(i) in case of 1 < a < 2,

fi(z) = exp [/S A(dg) /OOO (=79 —1—itz,70)) T_l_“dr} :
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(iii) in case of « =1, F1y € RY;

) = e | [ 3e) [ (669 1100, 0)) R 4 i)
and (A =0 is possible)
/S EX(dE) =0, A(S)+ 7] > 0.

Moreover, it also has the 2nd representation which is the same as the 2nd representation of a
stable distribution and satisfying the following:

o Incase of a £ 1, 7% =0 (A#0).
e In case of a =1, /f)\(df) =0, |v|+ A(S) > 0.
s
[Proof of Theorem 4.4]. Let u be an a-stable dist,, X; be a stable process corresponding to it. As

in the proof of the existence of an exponent, We know that tA = t>/“A, tv = v, (v,(dx) = v(t~/*dx)),
and if @« = 2, then v =0, if & < 2, then A = 0. Let

A(d€) = av((1,00)d¢)

on S = S?71. It is a finite measure and let v/ be given by the RHS of (2) in the theorem by using the
above A, i.e.,

V(dx) = / A(de) / Lig (rE)r 1= dr.
s 0
Then v/ = v holds. In fact, for Ya > 0,C € B(S), by a~%v(dr) = v, (dx) = v(adz), we have

V' ((a,0)C) = X\(C) /OO i = éaiD‘A(C) =a “v((1,00)C) = v((a,0)C).

Since A is determined by v, it is unique, and 7,y are so, too. The inverse is also clear.
On the 2nd representation, it is possible to get by using the following:

(oo}
/ (€ = 1)r~'"%dr =T(=a)e™ ™2 (0 <a<1).
0
/ (e =1 —iryr~ ' "%dr =T(—a)e ™/* (1 <a<2),
0

/ (e — 1 —izrlgq)(r))r 2dr = —gz —izlogz +icz (z > 0),
0

< dr t dr
c= sinr — + [ (sinr —7)—.
1 r 0 r

On the last equations of the above proof if 0 < o < 1, then by

oo [ee] u u oo
/ (e7"" —1)r~ 1 %dr = / drr_l_a/ (—re '")dt = —/ dt ta_l/ s =le=sqg
0 0 0 0 0

=—a 'l — a)u® =T(—a)u®, for w € C;# 0,Rew < 0, we have

/oo(ewr — l)r_l_“dr =I'(—a)(—w)*
0

where

with branching (—w)® = |w|*e**8(=%) ; arg(—w) € (—, 7). In fact, both sides are regular on Rew < 0,
continuous on Rew < 0,w # 0, equal for negative numbers, and hence, on Rew < 0,w # 0. Thus, we
have the 1st equation. On the 2nd equation, by integration by parts it is reduced to the 1st one. On the
last equation, by [ r=2(1 — cosr)dr = 7/2, it can be calculated directly.

Theorem 4.6 (X;) is a rotation invariant a-stable process (0 < a < 2) <= 3¢ > 0; E[e!*X0)] =
etel=l™, Moreover, if @ < 2, then X\ is an uniform measure on S.
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4.2  L- processes (self-decomposable processes) and L-distributions

As an extension of a stable process, it is called a self-decomposable process, or L-process.

Definition 4.3 (X;) is o self-decomposable process), or an L-process PN (Xt) is a d-
dimensional Lévy process and ¢ € (0,1), 3(Yy),(Z;): d-dimensional Lévy processes on >(Q, F', P'):
a probability space; (V) 1L(Z;), (Vi) = (¢Xy) in law, (Y + Zt) = (X¢) in law.

In this case the distribution of X; is called a self~-decomposable distribution or an L-
distribution. It is equivalent to the above with t = 1. That is, "¢ € (0,1), Zpe,n. € I(RY); p. 1L 7,

pe(z) = pi(cz), p= pe *ne.

Note. If ;1 is an L-dist., then Yt > 0, u** is so, too.

Lemma 4.1 (X;) is an L-process, i.e., X; @ w is an L-distribution <= Ve € (0,1),7n. €
I(RY);1i(2)/1i(cz) = Ne(2). <= Let u <> (A,v,v). Forr >0, set N(r,d¢) = v((r,00)d¢). "B € B(S),
np(s) := N(e %, B) is convex in s € R.

Proof. The first equivalence is clear by Z; @ e, and on the inverse, let (Z;) be a Lévy process
corresponding to 7. € I(R%). Note that (Y;) is determined by fi(cz).

On the later half equivalence, let p be an L-distribution and let ¢(z) = log i(z). By X3 @ i+ 7y,

y @ c¢X1. Y1 UL Z;, the log-characteristic function of Z; is 9.(z) = ¥(z) — ¥(cz). Therefore, It is

enough to show that p is an L-dist. <= 7. € I(R%), and in order to it we may show 7. = e¥ has an
LK-representation. Let A, = (1 — ¢?)A,v.(dx) : v(dz) — v(c 'dz). Then v, € RY; 9. < (Ae, Ve, Ve).
Hence, 7. € I(RY) is equivalent to v, > 0, i.e., v(E) —v(c ' E) > 0 (E € B(R?\ {0}). Moreover, this is
equivalent to the following: for any fixed B € B(S), let n(s) = np(s) and for Yu > 0, n(s + u) — n(s) >
n(s+u+logc) — n(s + loge). Furthermore, this is equivalent to the condition given in the theorem (—
the next question. Note that logc < 0 for ¢ € (0,1)). [ |

Question. Show the equivalences in the above proof, that is, v(E) —v(c 'E) > 0 (YE € B(R?\ {0})
<= For any fixed B € B(S), letting n(s) = ng(s), for Vs € R, u > 0,c € (0,1), n(s + u) — n(s) >
n(s+u+loge) —n(s+loge). < "B e B(S), np(s) := N(e™*, B) is convex in s € R.

Theorem 4.7 (Representation of L-process) (X;) is an L-process <= For a Lévy measure v
of X1, P\(d€): a finite measure on S, 3k‘g(r) > 0: measurable in £ € S, non-increasing right-continuous

inr >0, ke(0+) > 0;
v(dx) = /S A(d€) /O 140 (r€) Fe(r) o

r

Proof. Let (X;) be an L-process. Then by the above lemma, B € B(S), N(e™*, B) is convex in
s € R. Since N(r, B) = v((r,00)B) is non-increasing in r > 0, if we let

A(B) = —/0 (1 Ar2)dN(r, B) :/(0700)3(1/\|x| Y(dz),

then A is a finite measure on S, and for every r > 0, A(d€) < N(r,d¢). Thus, for each s € R, FH¢(s):
non-negative measurable ft of £ and N(e™*®,d€) = He(s)A(d§). Since the LHS is non-decreasing and
convex in s, for any s1 < s2,p € (0,1) and for M-a.a.g,

He(s1) < He(sz2), He(psi+ (1 —p)s2) < pHe(s1) + (1 — p)He(sz).

Hence, we may assume for M-a.a., He(s) is non-decreasing and convex in s. More exactly, we can take
a such version. In fact, 2C; € B(S); \(C{) = 0, and we may assume that for V¢ € Oy, for all rational
numbers s1 < s9,p € (0,1), He(s) satisfies the above inequality. Thus, let

Pz(s) = sup  He(r).

re(—o0,s)NQ
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Then this is measurable in £, and satisfies the above conditions and N(e™%,d§) = f?g(s)/\(df) Hence,
302 C 01;02 c B(S) and Vf S CQ,HE(*OO) = 0. Let
he(u) := lim n(He(u) — He(u — 1/n)).

n—oo

Then this is left-continuous, measurable in £ and
He(s)= [ he(wydu
Moreover, set C' = {{;he = 0},C5 = Cy \ C, then for £ € Cs, he(co) > 0 and

2((0,50)C) = lim N(e=*,C) = lim /C He(s)M(dg) = 0

S5— 00 §—00

Hence,

quw>=Nmm=Awi®www

/Bmcs A(dg) /_l:jrhf(U)du:/B)\(df) /rm hg(_logv)%@

If we define k¢ (v) := he(—logv) if £ € C3, then this is measurable in (£, v), non-increasing right-continuous
in v, and ke(0+) = he(oo) > 0. Moreover, set ke(v) = 1 outside of C3. Then this satisfies the desired
result.

The inverse is clear. u



LEVY PROCESSES (S. HIRABA) 23

5 Lévy Processes and Distributions

In this section, we first show that a Lévy process in law is equivalent to a Lévy process. Moreover, we
give some sufficient conditions for absolute continuity of the distributions.

5.1 Lévy Processes in law

The following result holds for a general Markov process which is continuous in probability, however, we
arrange ti to a Lévy process. (On a case of a Markov process, we describe at the end of this section.)

Theorem 5.1 Let (X;) be a Lévy process and X1 @ . Fore >0, let
ac(t) == P(|Xy| > €) = P(| X115 — Xo| > €) (Vs > 0).

(1) By the continuity in probability of (X;), Ye > 0,limy o a-(t) = 0 and by this (X;) has a D version,
i.e., 2(Y;) sis a D process and equivalent to (X;). Moreover, 't > 0,P(Y;_ = Y;) = 1 holds. (This
immediately follows from the continuity in probability of (X;), and of (Y)).

(2) If (X¢) is a Gaussian process, then "e > 0,limy ot L. (t) = 0 holds. By this (X;) has a C version.

Proof. (1) Let ac(t) := sup,ep 4 @<(s) and I C [a,b] C [0,00). Moreover, set
B(p,e,I) = {X; has p number of e-oscillations (at least) in I}

That is, this is an event of that there exist p+ 1 number of increasing time points t; € I (j =1,...,p+1)
such that [ Xy, — X, | > €.

(Outline of Proof) The essentials of the proof are that if at a time point, X; does not have a
right-hand-limit or a left-hand-limit, then there exist an g9 > 0 such that on a nbd of the time point, it
has infinitely many eo- oscillations ((1)), and an inequality obtained by the independent increments ((2)).

(D Let Anx be an event of that X, has finite number of 1/k-oscillations in ¢ € [0, N] N Q. Then it
holds that

() Ave C{"t>0,7X,, eR"."t> 07X, e R} =
Nk>1

@Forn>p>landleta<t; <---<t, <b I={t1,...,t,}, the independent increments implies

By this and the assumption of a.(t) — 0 (¢ ] 0), we have
@ YN, k> 1, P(A% ;) =0, and hence, P(21) = 1. By the continuity in probability of (X), it can be
shown Y; := Xy is a D version of (X3).

(Detailed Proof)
(D) We consider the complements. If there is no point ¢ > 0; X4 € R4, then there is no ¢, | t;1im X;, ,
that is,
ko 2 1;75,7n5,my > ji| X, — X, | 2 1/ko.

Moreover, a sub-sequence {t,,} can be taken such that

| X —thj| > 1/ky.

mit+1

Clearly, this implies (X;) has infinitely many 1/kq-oscillations in {¢,, }.
(2) can be shown by the induction on p. Recall I = {t1,...,t,} C [a,b], 1 <p <n. When p =1, let
C}. be an event of that |X; — X,| is larger than or equal to 2¢ first at j = k, i.e.,

Cr = {| X1, — Xa| > 2¢,|Xs, — Xo| <26, =1,2,...,k—1}
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and let Dy = {| X, — Xy, | > €}. Then Cj are mutually disjoint and it holds that

n

B(1,4¢,1) U{|th — Xo| > 2e} = | Cr C {|Xy — Xa| = e} U | J(CL N Dy).
k=1 k=1 k=1

The first inclusion is clear by complements, and the last one comes from
Ci N D§ € {1Xs, — Xal > 261X, — Xy, | < €} € {1 X — Xa| > Xy — Xa| = | X5 — Xy, | > 2},

Independent increments implies

P(B(p,4e,1)) < P(|Xp—Xu|>e)+ Zn:P(Ck)P(Dk)

k=1
< P(|Xp—oa — Xo|l 2 ¢)) + P(Cr)P(|Xp—t, — Xo| > ¢€)
k=1
< ac(b—a) +PU k)ae(b—a) < 2a:(b—a)
Next we assume the desired inequality holds for p (> 1).
- Let Ej, be an event of that (X;) has p number of 4e-oscillations in {¢1,...,¢;} and does not have

p number of 4e-oscillations in {¢1,...,t5—1}.
- Let Fj, be an event of that (X;) has at least 1 number of 4e-oscillations in {ty,...,¢,}. Then we
have

B(p,4e,1) = UEk, B(p+1,4¢e,1) C OEkka

By P(F}) < 2a¢(b— a) and by using the assumption of the induction and by independent increments,

P(B(p+1,4e.1)) < ZP Ey)P(Fy) < 2a:(b— a) ZP Ey)
k=1
= 2048(1) —a)P(B(p,4e,1)) < (2az(b — a))PTL.

Therefore, the desired inequality is obtained.
@) Fix YN,k > 1. Let ¢ = 1/(4k) and by the assumption we have ¢ > 1;a.(N/f) < 1/2. Let
te; == jN/L. Then it holds that

P(A% ) = P(X; has infinitely many number of 1/k-oscillations in [0, N] N Q)
¢
= Z P(X, has infinitely many number of 1/k-oscillations in [t; j_1,%¢,;] N Q)
j=1

L

= Zpli)ngop (pa]-/k [tfj 17t€j]mQ)
Jj=1

In fact, denote [trj_1,tr;] N Q = {t1,t2,...}. Then n > 1,

P(B(p, 1/k{t1, ..., tn}) < (20:(N/£))

and by letting n — oo, p — oo, we have the above. Therefore, P(£21) = 1 and set Y; := X4 1g,, then it
is right-continuous and has left-hand-limits. Moreover, for ¥t > 0, take r,, € Q, | t, then X, — Y; a.s.
and the continuity in probability 1mphes X,, — X, in pr. Hence, we have P(X; = Yt) =1.

(2) We first assume ta.(t) — 0 (¢} 0) and show (X;) has a C-version. By (1) there exists a D-version
(Y;). Thus, it is enough to show YN > 1, P("t € (0, N],Y; =Y;_) =1



LEVY PROCESSES (S. HIRABA) 25

Fix ¥/ > 1 and for each j = 0,1,...,¢, set t;; := jN/{. Fix Ye > 0 and let M., be a number of
Jj=1,....¢such that |Y;, , —VY;, . | > e. Let M. be a number of t € (0, N] such that |[Y; —Y; | > e.
Then M, ¢ is F-measurable and it holds that (— the next question)

My, < liminf M, 4.
{— 00 ?

Moreover, by
I
M.y => I([Y,,, =Yy, | >¢)
j=1

and by the assumption on a(t), we have

J4
EM.,=> P(Y,, =Y, | >¢) <Lac(N/E) =0 (£ — o).
j=1

Hence, by Fatou’s lemma,

EMs. < E[liminf M, ;] <liminf EM, , = 0.
{— 00 £— 00
Therefore, we have P((..,{M: = 0}) = 1 and get the desired result. (More exactly, let Qn :=
(>1 liminf, o My i = 0}, then it is contained the above event and Qn € F, P(Q2x) = 1. Thus, we

may let F be the completion.)
It remains to show that a Gaussian distribution satisfies a.(¢). In general,

A=) = oxp |~ (A2, ) + i, 2)

by change of variables we may set A = diag (A1,...,A,,0,...,0) (A; > 0), v = 0. Moreover, it is enough
to show that for Ye > 0,

By X/ =0if j > p,

p*(CE)

I
)
s
R
Q

p
P(|XJ| >e)=2 / —fz/(ZA_jt)dx
; Z \/27r)\
P 2
= 22\/77/ eiz /le'
p
< iZ\/ -/N0 Zo(t) (t]0),

where the last estimation comes from

/ e 2y < / Zema?l2 = 16762/2 by z/c>1
c c ¢ ¢

o0 2 o0 2 1 1 2
/ e ”* /2dac§/ e /2 (1+2> dr = —e~ /2,
C C x (&

Question. In the above proof, show My, < liminf, ,. M, ,.
If at a t > 0, ¥; has a jump with size larger than or equal to 2e, then by using right-continuity, >¢o; "¢ >

or

Lo, Hte,j,1 <t <tyy; |th — Yt[’j_1| > €. Because Yy, ;_, can be taken as close to Y;—, and Yy, ; can be taken as
close to Y;,
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5.2  Absolute continuity of distributions of Lévy Processes

In general, a o-finite measure x on R? has the following Lebesgue decomposition with respect to the
Lebesgue measure dx:
B = te+ [y e = Hac T Msc-

they are called “a continuous part+ a discrete part”, “continuous = absolute continuous + singular
continuous” such that "a, u.({z}) = 0, pg = Y. ande, ;an > 0,7, € R Moreover, pq. < dz, ie.,
|A] = 0= ptae(A) =0 <= F1f > 0; piac(dz) = f(z)dz, this f is unique a.e.

In this section, we consider the sufficient conditions for that a distribution u; of a Lévy process X; is
absolute continuous.

Theorem 5.2 For a Lévy process (X;) with a triplet (A, u,v), If rank A = d, then for ¥t >0, p; is
absolute continuous.

Since a non-degenerate Gaussian distribution (i.e., rank A = d) is clearly absolute continuous and the
convolution of it and an arbitrary distribution is also absolute continuous, the above is obvious.

If r = rank A < d, then By orthogonal transform, the first r-dimension has a Gaussian density. Thus,
in the remaining (d — r)-dimension space if it has a density by v, then the product of them is a density
on the whole space. Therefore, in the following we may assume A = 0 and investigate the conditions on
v for absolute continuity of ;.

If a Lévy measure v is absolute continuous, then u is so, too, as in the following. However, in multi-
dimensional case, we have an example of that p is absolute continuous even if v is not so. The rotation
invariant stable distribution is an example of the first half, and the product of 1 -dimensional symmetric
stable distributions is the one of the later half.

Let a finite measure 7(dx) = (1 A |z|?)v(dx).

Theorem 5.3 (The 1st sufficient condition for absolute continuity) Ifv(R%) = co and ¢ >
1; 7% is absolute continuous, then for "t > 0, the distribution of X, @ is absolute continuous.

Proof.
The distribution g of X; can be approximated by compound Poisson distributions p,, by Lévy mea-
sures Vp, = V|{|z|>1/n}
+ Z eicn yl/s*
‘ !

k>¢

k

. 14
B N
Hn = E e % v, =
k>0 ’ k

(with ¢, = v,(R%)) and p has p, as a convolution element (i.e., u = p,, * ). Moreover, the above 2nd
term is absolute continuous, and by ¢, — co, we have

—1 k
—cn On
(,usc + /f"d)(Rd) S (Mn,sc + Mn,d)(Rd) S Z (& E — 0.
k=0
Finally, for X; (¢t > 0), we only change ¢,, to tc,, and so the desired result holds. ]

A RV X is degenerate <2 3q ¢ R%,3V ¢ R%: a subspace; dimV < d,P(X €a+V)=1,ie,
supp pux Ca+ V.

A Lévy process (X;) is degenerate L vy s 0,P(X;€at+V)=1.

If it is not degenerate, then if is called be non-degenerate. Moreover, in general, the following are
equivalent: (1) ¢t >0,P(X; €V)=1,(2) %t >0;P(X, €V) =1, (3) ARY),suppr CV,y €V

Theorem 5.4 (The 2nd sufficient condition for absolute continuity) If (X:) is a non-
degenerate Lévy process and if its Lévy measure v is absolute continuous in radial directions and satisfies
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divergence condition, that is, FX(€): a finite measure on S = S?=1, Fg(r,€): a measurable function on
(0,00) x S; (note that if we set g(0,&) =0 and we may consider r € [0,00).)

V(dm):/sA(df)/o g(r, &) 14, (ré)dr, /0 g(r,&)dr = oo A(dE)-a.e.,

then Yt > 0, the distribution of X, is absolute continuous.

Note. The divergence condition contains the case of v = 0, i.e., A = 0, however, in this case we have
rank A =d.
In order to proof we use the following lemmas:

Lemma 5.1 Ifv is absolute continuous in radial directions and for an arbitrary (d —1)-dimensional
subspace V, v(V) = 0, then v®™ is absolute continuous, and by the previous theorem, u is absolute
continuous.

Lemma 5.2 For a linear subsapce V;dimV < d — 1, let T be the orthogonal projection from RY.
If v is absolute continuous in radial directions, then vT~1 on V is so, and if v satisfies the divergence
condition, and if VT~ # 0, then vT ! is so.

[Proof of Theorem 5.4].

It is enough to show the case of ¢ = 1, that is, u is absolute continuous. As mentioned before, we may
set A —0. If d =1, then v is absolute continuous by Theroem 5.2. We assume the claim holds in lower
d-dimension and show in d-dimension. If v(V) = 0 for any (d — 1)-dimensional subspaces V', then by
Lemma 5.1 1 is absolute continuous. Thus, it is enough to show the case that 2V a (d — 1)-dimensional
subspace; (V) > 0. Let V; be a linear subspace spanned by the support of the restricted v to V. Then
1 <dimV; <d-—1, Let V5 be the orthogonal complement of V7, denote orthogonal projection to Vi, Vo
as T1, Ty and set x; = Tjz. Then R? = V; @ Va. We define y; € I(R?) by the following:

fi1(2) = exp UV (=) — 1~ i<z,x>1p(x))l/(d$)} (D = {lz| <1}).

By Lemma 5.2, on Vi, vT: 1_1 is absolute continuous in radial directions and satisfies the divergence
condition, then by the assumption of induction, 7*fi(z1) > 0;ui(dz1) = f(x1)dz;. Hence, for B €
B(R%);|B| = 0, it is enough to show u(B) = 0. Define us € I(R?) by p = p1 * pa. We have

H(B)Z/Rd h(y1,y2)p2(dy), h(y1,y2) 5:/‘/ 1p(w1 +y1,y2) f(z1)dx;.

By
/ dyz/ Lp(w1,y2)dz1 = |B| =0,
Va Vi

/ 1g(x1,y2)dzy = 0 dys-a.e., that is, for Yy, ¢ By with 2By € B(Va);|Ba| = 0. Hence, for "y, € V; and
i

d
Yys & B, / 1p(x1 + y1,y2)dzr = 0. Thus, h(y1,y2) = h(y1,y2)15,(y2). Define Y :(:) pe on R, and
Vi

(d)
Y; :=T;Y, let py := Y5 on Vo, pi(dyi| y2) := P(Y1 € dyi| Y2 = y2). Then

u(B) = [ o)t edn) = [ pa(a) [ b ).

Bs Vi

and hence, ps € I(V3). Let v5 be a Lévy measure of us, Then the Lévy measure of py is vz := VQT{I‘VZ.
This is absolute continuous in radial directions and satisfies the divergence condition on V5, and ps is
non-degenerate. In fact, if the support of v3 is contained in a proper subspace of Va; Vi’ C Va, then the
support of 5 is in V3 + V3, and hence, v is so, however it contradicts the non-degeneracy of . Thus, the
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space spanned by the support of v3 is V5, and ps is non-degenerate on V5. Therefore, by the assumption
of the induction, ps is absolute continuous on Vo and we have p2(Bz) = 0. Hence, u(B) = 0. [ |

[Proof of Lemma 5.1]. Let |B| =0 and we show 7%*(B) = 0.

d 0o o d
Zd*(B):/Sd]l;[l)\(dfj)/O /0 1p(ri& + - + raéa) H (rj, &) (L AT? 7)dr;.

By the assumption, 'V C RY; a subspace ; dim V' < d, we may set A(VNS) =0 & L CTRW. Moreover, let
V(&1,...,&4) be a linear subspace spanned by &1,...,&; € S and for 1 <r <d, let K, = {(&,...,&4) €
St dim V (&1, ...,&4) = r We divide S? as the following disjoint union:

:UKT7 K, = U K(il,...,ir) if’l"<d,

r<d {i1,..0r}

where K (iy,...,i,) is a family of all (&1,...,&4) € K, such that &;,,...,&;, are linear independent. On
K4, by |B| = 0 and change of variables it is 0. On the other sets they are 0 by the assumption. Hence,
we have 7%*(B) = 0 #18%. In fact, if &,...,&, are linear independent, then by change of variables
(rj)j<d = m1&1 + - + rqe€q, we have

d

/ / B(ré& + -+ ra€q) H (rj,&5) IAT?)drj =0.

Hence, it is 0 on Ky. Moreover, let 1 < r < d — 1 and fix i9 # 4¢1,...,%.. By the assumption
MK (i1,...,3r)) =0 and K(i1,...,4) =SNV(&,,...,&,) implies

/Km, ,mHA %) / [ Mg / W (e, o) (Gi0)M(dEig) = 0

" j#io

Therefore, 79 (B) = 0. [ |

[Proof of Lemma 5.2]. Let V3 be an orthogonal complement of V', and let T» be the orthogonal
projection to Va. Let ¢ := A\(S'\ Va). If ¢ = 0, then the support of v is in V5, the support of vT1 is {0},
and hence, it is clear. Let ¢ > 0. Let @ := ¢~ 'v be restricted to S\ V2 and as a probability measure we
define RVs Y (§) = T¢/|T¢|, Z(§) = T2€ and define a distribution of Y as Py (dn) = Q(Y € dn) on SNV,
and define a conditional distribution of Z under the condition Y =7 as P (d¢) = Q(Z € d¢| Y =n) on
Vo. PJ(dC) is a distribution on {|¢| < 1} N V4 and it is determined except 1 with 0 Py measure. Note
that € = T¢ 4+ Toé = (1 —|Z|2)V2Y + Z (since 1 = |€]> = |T€|? + |Z]? and by |T¢]> = 1 — |Z|?). Let
A(dn) := cPy (dn) and

Glryy) = /V (1= 1) 2g((1 — [CP) 2 (1 )20 + ) P2(dC)
Then we have

) = [ Aan) [ Glaatir
SNV 0

In fact, for YB € B(V);0 ¢ B, under the above distribution by ¢ — ¢ = T¢ = (1 — |¢|?)'/?n, we have
VT-U(B) = /S ) /0 o(r )15 (rTE)dr
_ Py (d P"(d > o 2\1/2 1/2
o el n)/w 20 [ gl (1= G 2+ )1l (1 = [ 2)dr
= Py (d —[¢[*) " ?hp
of pl n)/vz(l (¢~ 2 (1, ) PI(AC),
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where

hp(n,¢) = /0009((1 = ICA) 72 (1 = 1) 20 + O)1p (rn)dr.

Therefore we have the above equation.

Moreover, on the divergence condition, it is equivalent to that YC' € B(S),v((0,00)C) = 0 or oco. If
C e B(SNV), then x € T71((0,00)C) <= Tax # 0,Tz/|Tx| € C. Thus, let C; be a set of unitarized
vectors of (0,00)C + Va. Then T71((0,00)C) = (0,00)Cy and C; € B(S) implies vT~1((0,00)C) =
v((0,00)C1) = 0 or oo. [ |
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6 Lévy Processes and Markov Processes

(X:¢): a Markov process &L For arbitrary time 0 < s < t and bounded Borel function f,
E[f(Xy)| Fs] = E[f(Xy)| Xs] a.s. Moreover, if (the above)= E[f(X;—s| Xo = z]| z=x. a.s., then it
is called a time homogeneous MP.

When X, = x a.s., it is called a Markov process starting from . In this case it is denoted as X; = X}
or (Xt; PQL)

For example, for a Lévy process (X;), let X¥ = x + X;, then it is a Markov process starting from x.

Let (X, P,) be a time homogeneous Markov process on R? starting from . For a bounded Borel ft
©, let

Pua.dy) = Po(Xe € ). Prg@) = Bule(X0l = [ o) i)
and this is called a transition probability.
For a transition probability (Pi(x, dy))t>0, if 2 (P:(dy))i>0; Pi(z,dy) = P;(dy — x) (Yt > 0), then it is
space homogeneous and (X;) is called a time space homogeneous Markov process.

This process is equivalent to a Lévy process in law and it is given as P;(dy) = u**(dy).

Theorem 6.1 Let (X;) be a time homogeneous Markov process starting from xo and let Py(z, dy) be
its transition probability. For e >0, set D.(x) := {y; |z —y| < e} and

ae(t) := sup Py(z,D:(z)¢) = sup P.(|X: — x| > ¢).
z€RI zeRA
(1) If Ve > 0,limg o e (t) = 0, then (X;) is continuous in probability and has a D-version, i.e., (Y;)
is a D-process and equivalent to (X;). Moreover, 't > 0, P(Y;— =Y;) = 1 holds.
(2) If Ve > 0,limy 0t~ Lae(t) = 0, then (X;) has a C-version.

Proof. The proof is almost the same as in the Lévy case. Only (2) is changed to the following, and we
show it: Let ac(t), B(k,e,I) be defined by the same as before. Let 0 < 51 < -+ < 8 < a < b, I C [a,b]
and for a bounded Borel function g(z1,...,2m), set Z := g(Xsy,..., Xs,,)-

(2) By Markov property the following holds.

E|Z; B(p,4e,1)] < EZ(2a(b — a))P.

This can be shown by the induction on p. If p = 1, then let C, Dy be the same as in the Lévy
case. That is, let Cy be an event of that |X;, — X,| is larger than or equal to 2¢ first at j = k and set
Dy, = {|Xp» — X4, | > €}. Then Cj are mutually disjoint and it holds that as in the Lévy case

B(1,4¢,1) C | J{IXi, — Xal = 26} = | Cx € {|Xy — Xa| = e} U | (Ck N D).
k=1 k=1 k=1

If we take conditional expectations on F, and on F;,, then by Markov property, we have

E[Z;B(1,4e,1)] < E[ZP(IX, - Xa| > | Xa)| + Y E[Z1¢, P(Dy| X1,)]
k=1

= E[ZPx,(|Xp-a — Xo| > ¢)] Z [Z1¢, Px,, (| Xo—t, — Xo| > )]

EZoe(b—a)+ Y E[Zlc,)oc(b—tx) < EZ - 20:(b — a).
k=1

IN

Next we assume the desired inequality holds for p (> 1). Let E}, Fy be the same as in case of Lévy. By
P(Fy| X,) < 2az(b— a), by the assumption of the induction and by Markov property, we have

E[Z;B(p+1,4¢,1)] < zn:E[ZlEkP(FM X,)] < 2az(b—a) zn:E[Z; Ey]
k=1 k=1
= 2a.(b—a)E[Z;B(p,4e,1)] < EZ(2a.(b — a))PT.

Therefore, the desired inequality is obtained. [ ]



