Lévy 過程 (Lévy Processes)

平場 誠示 (Seiji HIRABA) 2024年7月12日

目次

1	Lév	yy 過程についての概要	1
2	Lévy 過程の定義と基本例		5
	2.1	Lévy 過程の定義	:
	2.2	指数時間と Poisson 過程	ć
	2.3	複合 Poisson 過程	7
	2.4	Brown 運動 (Wiener 過程)	
3	Lévy 過程と無限分解可能分布		12
	3.1	無限分解可能分布	12
	3.2	Lévy-Khintchine の標準形	14
4			
	4.1	安定過程と安定分布	19
	4.2	L-過程 (自己分解可能過程) と L-分布	23
5	Lévy 過程と分布		26
	5.1	法則の意味の Lévy 過程	26
	5.2	Lévy 過程の分布の絶対連続性	29
6	Lév	y 過程と Markov 過程	33

本テキストでは、確率過程の中でも基本となる独立増分性を持つもの、即ち、**加法過程**について考え、特に、その中でも、確率連続で、時間的一様性をもち、見本関数が第1種不連続、即ち、右連続左極限をもつとき、**Lévy 過程**と呼び、これについて様々な性質を詳しく述べる.

Lévy 過程の各時点での分布が無限分解可能分布と呼ばれるものとなり、1 対 1 対応がつくこと、更に、その特性関数が Lévy-Khintchine の標準形で与えられることを示す。また、見本関数が Lévy-Ito 分解という確率積分を用いた表現を持つことも重要である。それについては、次節で概要だけ、紹介する。

本テキストは、**佐藤健一著「加法過程」(紀伊國屋書店)**を参考にし、証明の殆どは、ほぼ同じであるが、著者なりに理解し、少しでも分り易くなるよう、簡単化と詳細化を施したつもりである.

加法過程, Lévy 過程の定義は, テキストによって, 異なることがあり, 注意が必要である. 例えば, 佐藤健一著「加法過程」(紀伊國屋書店)では, Lévy 過程を加法過程と呼び, その英語版では, Lévy 過程と呼んでいる. 伊藤清著「確率論」(岩波書店)では、Lévy 過程には, 時間的一様性は仮定していない.

1 Lévy 過程についての概要

時間と共にランダムに変化する値を表すものを**確率過程(stochastic process)**というが、普通、時間を $t \ge 0$ として、その時のランダムな値を $X_t = X_t(\omega)$ として表し、確率過程を $(X_t)_{t \ge 0}$ と記す.本テキストでは \mathbf{R}^d に値をとるものしか考えないので、 $X_t = (X_t^j)_{j \le d}$ とする.但し、ベクトルは $x = (x_j)_{j < d} = (x_1, \dots, x_d) \in \mathbf{R}^d$ と表す.また内積を $\langle x, y \rangle \equiv x \cdot y = \sum_{i \le d} x_i y_i$ とする.

Lévy 過程とは, \mathbf{R}^d で, 0 を出発し, 独立増分性と時間的一様性を持つ, 確率連続な確率過程で, 見本関数が右連続左極限をもつものを言う. これを $(X_t)_{t\geq 0}$ で表すと, 次と同値となる.

 $\forall t>0, X_t$ の分布 $\mu_t=P\circ X_t^{-1}$, i.e., $\mu_t(dx)=P(X_t\in dx)$ が無限分解可能分布 (infinitely divisible distirbution) と同値. これはまた次と同値: $\mu=\mu_1$ として, 任意の t>0 に対し, $\mu_t=\mu^{t*}$ を満たす. 右辺は, μ の t 個の畳み込みを表す. 但し, 畳み込みとは, 一般に測度 μ,ν に対し,

$$\mu * \nu(dx) := \int \mu(dx - y)\nu(dy) = \int \nu(dx - y)\mu(dy) = \int \int 1_{dx}(y + z)\mu(dy)\nu(dz).$$

 $\nu=\mu$ のとき, μ^{2*} と表し, 一般に, $n\in \mathbb{N}$ に対し, $\mu^{n+1*}=\mu^{n*}*\mu$ を定義. 更に, μ が無限分解可能分布のときは, これを正の有理数 m/n, 正の実数 t まで拡張して μ^{t*} が定義される.

更に、このとき、 X_t 特性関数 $\hat{\mu}_t(z) := E[e^{i\langle z, X_t \rangle}]$ $(i = \sqrt{-1})$ が Lévy-Khintchine の標準形 を持つことと同値となる. 即ち、 $\hat{\mu}_t(z) = e^{t\psi(z)}$;

$$\psi(z) = -\frac{1}{2}\langle Az, z\rangle + \int_{(|x| \ge 1)} (e^{i\langle z, x\rangle} - 1)\nu(dx) + \int_{(|x| < 1)} (e^{i\langle z, x\rangle} - 1 - i\langle z, x\rangle)\nu(dx) + i\langle \gamma, z\rangle.$$

ここで,

- ・ $A = (a_{jk}); a_{jk} = \sum_{\ell \leq m} \sigma_\ell^j \sigma_\ell^k$, 但し, $\sigma = (\sigma_\ell^j)_{\ell \leq m, j \leq d}$: 拡散係数 (diffusion coefficient).
- $\cdot \gamma = (\gamma_j)_{j \leq d} \in \mathbf{R}^d$

 $\nu=\nu(dx)$ は **Lévy 測度** と呼ばれる \mathbf{R}^d 上の測度で, $\nu(\{0\})=0$ と $\int_{\mathbf{R}^d}1\wedge|x|^2\nu(dx)<\infty$ を満たす.

更に、これは次とも同値となる. Lévy-Ito の分解定理 という.

$$dX_t(\omega) = \gamma dt + \sigma dB_t(\omega) + \int_{(|x| \ge 1)} xN(\omega; dt, dx) + \int_{(|x| < 1)} x\widetilde{N}(\omega; dt, dx), X_0 = 0.$$

より正確には,

$$X_t(\omega) = \gamma t + \sigma B_t(\omega) + \int_0^t \int_{(|x| \ge 1)} x N(\omega; ds, dx) + \int_0^t \int_{(|x| < 1)} x \widetilde{N}(\omega; ds, dx).$$

成分で表せば, $X_t = (X_t^j)_{j \le d} = (X_t^1, \dots, X_t^d)$;

$$X_t^j = \gamma_j t + \sum_{\ell \leq m} \sigma_\ell^j B_t^\ell + \int_0^t \int_{(|x| \geq 1)} x_j N(\omega; ds, dx) + \int_0^t \int_{(|x| < 1)} x_j \widetilde{N}(\omega; ds, dx).$$

ここで, $B_t = (B_t^{\ell})$: m 次元 Brown 運動で, $N(\omega; dt, dx)$: $dt\nu(dx)$ -Poisson 配置 on $[0, \infty) \times \mathbf{R}^d$, $\widetilde{N} = N - \widehat{N}$: 補正 Poisson 配置. 但し, $\widehat{N} = E[N]$, i.e, $\widehat{N}(dt, dx) = dt\nu(dx)$: N の平均測度.

もう少し、説明すると、 $\Delta X_t:=X_t-X_{t-}$ で X_t の時刻 t でのジャンプ(跳び)を表し、 $N(dt,dx):=\sharp\{(t,\Delta X_t)\in dt\times dx;\Delta X_t\neq 0\}$ は時空間における跳びの配置を表す.このとき、Lévy 過程の独立増分性と時間的一様性から、N が Poisson 配置と呼ばれるものとなることが言える.

この分解定理は、ラフには、 X_t から大きいジャンプを順に取り除いて行けば、極限として残るのが、連続過程となり、それが Gauss 過程となる、ということを表している。厳密には、小さいジャンプを除くときは、その平均を加えながら行う。(伊藤清はそのように証明した。)即ち、

$$X_t^n = X_t - \int_0^t \int_{(|x| \ge 1)} xN(ds, dx) - \int_0^t \int_{(1/n \le |x| < 1)} x\widetilde{N}(ds, dx).$$

 $n \to \infty$ とすれば, $X_t^n \to {}^\exists X_t^c$ となり, X_t^c が連続な Lévy 過程, つまり Gauss 過程となる.

このとき, 特性関数が上の標準形をもつことは, **伊藤の公式(ジャンプ型)** を用いれば, すぐ分かる. $f(x) = e^{ix \cdot z} \in C^2(\mathbf{R}^d)$ に対し,

$$df(X_{t}) = \gamma \cdot Df(X_{t})dt + \sigma \cdot Df(X_{t})dB_{t} + \frac{1}{2}\sigma^{2} \cdot D^{2}f(X_{t})dt$$

$$+ \int_{(|x| \ge 1)} [f(X_{t-} + x) - f(X_{t-})]N(dt, dx)$$

$$+ \int_{(|x| < 1)} [f(X_{t-} + x) - f(X_{t-})]\widetilde{N}(dt, dx)$$

$$+ \int_{(|x| < 1)} [f(X_{t-} + x) - f(X_{t-}) - x \cdot Df(X_{t-})]\nu(dx)dt$$

但し, $\gamma \cdot D = \gamma^j \partial_j$, $\sigma \cdot D = \sigma_\ell^j \partial_j$, $\sigma^2 \cdot D^2 = \sum_{\ell \leq m} \sigma_\ell^j \sigma_\ell^k \partial_{jk}^2$ (更に, 上と下にある添字については和をとるものとする). また $\partial_j = \partial/\partial x_j, \partial_{jk}^2 = \partial^2/\partial x_j \partial x_k$.

平均をとれば確率積分の性質から, B_t , \widetilde{N} の部分が消えることにより,

$$\begin{split} d\varphi_t(z) &:= dE[f(X_t)] = E[df(X_t)] \\ &= i\gamma \cdot z\varphi_t(z)dt - \frac{1}{2} \sum_{\ell \le m} \sigma_\ell^j \sigma_\ell^k z_j z_k \varphi_t(z) dt \\ &+ \int_{(|x| \ge 1)} \varphi_t(z) [e^{ix \cdot z} - 1] dt \nu(dx) + \int_{(|x| < 1)} \varphi_t(z) [e^{ix \cdot z} - 1 - ix \cdot z] dt \nu(dx) \\ &= \varphi_t(z) \bigg\{ i\gamma \cdot z - \frac{1}{2} a_{jk} z^j z^k \\ &+ \int_{(|x| \ge 1)} [e^{ix \cdot z} - 1] \nu(dx) + \int_{(|x| < 1)} [e^{ix \cdot z} - 1 - ix \cdot z] \nu(dx) \bigg\} dt. \end{split}$$

つまり, $d\varphi_t(z)=\varphi_t(z)\psi(z)$. これと $\varphi_0(z)=E[e^{iz\cdot X_0}]=1$ より, 求める標準形 $\varphi_t(z)=e^{t\psi(z)}$ を得る.

他の同値については、この分解定理の表現を持つとき、確率積分の性質から、独立増分性と時間的一様性も分るので、Lévy 過程となる逆に、特性関数が上の標準形を持つなら、 X_t の分布は無限分解可能分布となり、それと法則の意味の Lévy 過程は(法則同等を除いて)1 対 1 に対応する. (§5.1)

後は、Lévy 過程が Lévy-Ito の分解定理を満たすことを示せば、全ての同値が言えたことになる。これについても、天下り的に、上の確率積分で表現された X_t の特性関数が、同じ標準形をもつので、法則同等となり、パスが右連続左極限をもつことから、何れも $D([0,\infty)\to \mathbf{R}^d)$ 上の同じ分布をもつことになる。従って、元の Lévy 過程も分解できる(と言える).

ここで述べた, 確率積分 (伊藤積分) や伊藤の公式等について詳しく知りたければ, , 別テキストの「確率積分と確率微分方程式」を参照してもらいたい.

2 Lévy 過程の定義と基本例

本節では、Lévy 過程の定義と基本となる例として、Poisson 過程、複合 Poisson 過程、さらに Brown 運動について述べる。(尚、Brown 運動については、定義と性質と構成法のみ述べて、証明に ついては、テキスト「確率積分と確率微分方程式」を参照して欲しい。)

2.1 Lévy 過程の定義

定義 2.1 \mathbf{R}^d 値確率過程 $(X_t)_{t\geq 0}$ が Lévy 過程 (Lévy process) であるとは, 次を満たすときをいう.

- (1) $X_0 = 0$ a.s.
- (2) (X_t) は独立増分性をもつ, i.e., $0 \le t_0 < t_1 < \dots < t_n$, $\{X_{t_k} X_{t_{k-1}}\}_{k \le n}$ が独立.
- (3) s,t>0 に対し、 $X_{t+s}-X_s\stackrel{\text{(d)}}{=} X_t$, i.e., 時間的一様性をもつ.
- (4) 確率連続である, i.e., $\forall t \geq 0, \varepsilon > 0, P(|X_s X_t| < \varepsilon) \rightarrow 1 (s \rightarrow t).$
- (5) 確率 1 で, 見本関数が右連続左極限を持つ, i.e., ${}^{\exists}\Omega_0 \in \mathcal{F}; P(\Omega_0) = 1, {}^{\forall}\omega \in \Omega_0, (X_t(\omega))_{t \geq 0}$ が t の関数として右連続で左極限を持つ.

また、最後の見本関数の以外の条件を満たすときは、単に 法則の意味の Lévy 過程という.

第 5.1 節で、法則の意味の Lévy 過程は普通の Lévy 過程と同等であることを示すので、見本関数の性質は本質的ではない. 即ち、 (Y_t) が法則の意味の Lévy 過程なら、普通の Lévy 過程 $^{\exists}(X_t)$ があり、 $^{\forall}t>0$ 、 $P(X_t=Y_t)=1$ を満たす.

確率連続の条件は, 0 を出発することと時間的一様性から, t=0 での確率連続性に置き換えても良い. 即ち,

$$\forall \varepsilon > 0, \lim_{t \downarrow 0} P(|X_t| < \varepsilon) = 1.$$

2.2 指数時間と Poisson 過程

定数 $\alpha > 0$ に対し、確率変数 $\tau = \tau(\omega)$ がパラメータ α の指数分布に従う とは

$$P(\tau > t) = \int_{t}^{\infty} \alpha e^{-\alpha s} ds = e^{-\alpha t}$$

をみたすときをいう. 即ち τ が密度関数 $f(s)=\alpha e^{-\alpha s}$ の分布をもつということである. 本テキストでは τ を単に α -指数時間 or 指数時間 (exponential time) と呼ぶことにする.

このとき平均と分散は容易に計算でき、次のようになる.

$$E[\tau] = \int_0^\infty \alpha s e^{-\alpha s} ds = \frac{1}{\alpha}, \quad V(\tau) = E[\tau^2] - (E[\tau])^2 = \frac{1}{\alpha^2}.$$

問 2.1 上の分散の計算を確かめよ.

命題 2.1 τ が指数時間なら、次の無記憶性 (memoryless property) をもつ. $t,s \geq 0$ に対し、

$$P(\tau > t + s | \tau > s) = P(\tau > t).$$

[証明]

$$P(\tau > t + s | \ \tau > s) = \frac{P(\tau > t + s)}{P(\tau > s)} = \frac{e^{-(t + s)}}{e^{-s}} = e^{-t} = P(\tau > t).$$

命題 2.2 $\tau_1, \tau_2, \ldots \tau_n$ が独立で、それぞれ $\alpha_1, \alpha_2, \ldots, \alpha_n$ の指数時間なら、 $\min\{\tau_1, \tau_2, \ldots \tau_n\}$ は $\alpha_1 + \alpha_2 + \cdots + \alpha_n$ -指数時間となる.さらに

$$P(\min\{\tau_1, \tau_2, \dots \tau_n\} = \tau_k) = \frac{\alpha_k}{\alpha_1 + \alpha_2 + \dots + \alpha_n}.$$

[**証明**] 簡単のため n=2, k=1 のときに示す.

$$P(\tau_1 \wedge \tau_2) > t = P(\tau_1 > t, \tau_2 > t) = P(\tau_1 > t)P(\tau_2 > t) = e^{-(\alpha_1 + \alpha_2)t}$$
.

また τ_1, τ_2 の結合分布が、独立性から、それぞれの分布の積となることから

$$\begin{split} P(\min\{\tau_1,\tau_2\} &= \tau_1) &= P(\tau_1 < \tau_2) \\ &= \int_0^\infty ds \alpha_1 e^{-\alpha_1 s} P(s < \tau_2) \\ &= \int_0^\infty ds \alpha_1 e^{-\alpha_1 s} e^{-\alpha_2 s} \\ &= \frac{\alpha_1}{\alpha_1 + \alpha_2}. \end{split}$$

一般のときも同様である.

例 2.1 A と B の二つの装置からなるシステムがあり、A が故障するまでの時間が 1-指数 時間で、B が故障するまでの時間が 2-指数時間であるという。これらは独立に故障し、一つでも故障すれば、システム全体が故障するとする。このときシステムが故障するまでの時間の平均値を求めよ。

前の命題からシステムが故障するまでの時間は3-指数時間となるので、その平均は1/3となる.

 $\lambda > 0$ に対し、確率過程 $(X_t)_{t\geq 0}$ が**パラメータ** λ **の Poisson (ポアッソン) 過程**であるとは Lévy 過程で、 X_1 の分布が λ -Poisson 分布であるときをいう. 即ち、以下をみたすときをいう (単に λ -Poisson 過程ともいう).

- (1) $X_0 = 0$,
- (2) $0 \le s < t$ なら $X_t X_s$ はパラメータ $\lambda(t-s)$ の Poisson 分布に従う. 即ち、

$$P(X_t - X_s = k) = e^{-\lambda(t-s)} \frac{\lambda^k (t-s)^k}{k!}$$
 $(k = 0, 1, 2, ...).$

(3) X_t は独立増分をもつ.

即ち, $0 < t_1 < t_2 < \dots < t_n$ に対し, $X_{t_1}, X_{t_2} - X_{t_1}, \dots, X_{t_n} - X_{t_{n-1}}$ は独立.

定理 2.1 (Poisson 過程の構成) $\sigma_1, \sigma_2, ...$ を独立同分布な確率変数で, それぞれ λ-指数 時間であるとする. $\tau_n = \sum_{k=1}^n \sigma_k, \tau_0 = 0$ とおき,

$$X_t = n \iff au_n \leq t < au_{n+1}$$
 即ち、 $X_t := \sum_{n=0}^\infty n \mathbf{1}_{[au_n, au_{n+1})}(t) = \max\{n; au_n \leq t\},$

と定義するとこれは λ -Poisson 過程となる.

注 上の定理の逆も言える. 即ち, $(X_t)_{t\geq 0}$ を λ -Poisson 過程とし, そのジャンプ時刻を τ_1, τ_2, \ldots とする. このとき $\tau_1, \tau_2 - \tau_1, \tau_3 - \tau_2, \ldots$ は独立同分布で, それぞれ λ -指数時間となる.

証明の前に必要な事柄を述べておく.

命題 2.3 独立な n 個の λ -指数時間 σ_k の和 $\tau = \sum_{k=1}^n \sigma_k$ はガンマ分布 $\Gamma(n,\lambda)$ に従う, i.e.,

$$P(\tau < t) = \int_0^t \frac{1}{(n-1)!} \lambda^n s^{n-1} e^{-\lambda s} ds.$$

[証明] (σ_n) の独立性により,

$$P(\sigma_1 + \dots + \sigma_n < t) = \int_{s_1 + \dots + s_n < t} \lambda^n e^{-\lambda(s_1 + \dots + s_n)} ds_1 \dots ds_n$$

 $u_k = s_1 + \cdots s_k \ (k = 1, \dots, n)$, 特に $s = u_n$ として変数変換すれば,

$$\int_{s_1 + \dots + s_n < t} \lambda^n e^{-\lambda(s_1 + \dots + s_n)} ds_1 \dots ds_n = \int_0^t du_n \int_0^{u_n} du_{n-1} \dots \int_0^{u_2} du_1 \lambda^n e^{-\lambda u_n}
= \int_0^t du_n \int_0^{u_n} du_{n-1} \dots \int_0^{u_3} du_2 u_2 \lambda^n e^{-\lambda u_n}
= \int_0^t du_n \frac{1}{(n-1)!} u_n^{n-1} \lambda^n e^{-\lambda u_n}
= \int_0^t ds \frac{1}{(n-1)!} \lambda^n s^{n-1} e^{-\lambda s}$$

定理 2.1 の証明 まず τ_n は σ_{n+1} と独立で $\Gamma(n,\lambda)$ 分布に従うことから

$$\begin{split} P(X_t = n) &= P(\tau_n \le t < \tau_{n+1} = \tau_n + \sigma_{n+1}) \\ &= \int_0^t ds \; \frac{1}{(n-1)!} \lambda^n s^{n-1} e^{-\lambda s} P(t < s + \sigma_{n+1}) \\ &= \int_0^t ds \; \frac{1}{(n-1)!} \lambda^n s^{n-1} e^{-\lambda s} e^{-(t-s)\lambda} \\ &= e^{-\lambda t} \frac{\lambda^n}{(n-1)!} \int_0^t s^{n-1} ds = e^{-\lambda t} \frac{\lambda^n t^n}{n!}. \end{split}$$

次に同様な計算で

$$\begin{split} P(\tau_{n+1} > t + s, X_t = n) &= P(\tau_{n+1} > t + s, \tau_n \le t < \tau_{n+1}) \\ &= P(\tau_n + \sigma_{n+1} > t + s, \tau_n \le t) \\ &= \int_0^t du \; \frac{1}{(n-1)!} \lambda^n u^{n-1} e^{-\lambda u} P(u + \sigma_{n+1} > t + s) \\ &= \int_0^t du \; \frac{1}{(n-1)!} \lambda^n u^{n-1} e^{-\lambda u} e^{-\lambda (t+s-u)} = e^{-\lambda (t+s)} \frac{\lambda^n t^n}{n!} \end{split}$$

これから

(2.1)
$$P(\tau_{n+1} > t + s | X_t = n) = e^{-\lambda s} = P(\sigma_1 = \tau_1 > s).$$

更に, $X_t = n$ の条件のもと, $\tau_{n+1} - t, \sigma_{n+2}, \dots, \sigma_{n+m}$ の分布は, $\sigma_1, \sigma_2, \dots, \sigma_m$ と一致する. 実際,

$$P(\tau_{n+1} - t > s_1, \sigma_{n+2} > s_2, \dots, \sigma_{n+m} > s_m | X_t = n)$$

$$= P(\tau_n \le t < \tau_{n+1}, \tau_{n+1} - t > s_1, \sigma_{n+2} > s_2, \dots, \sigma_{n+m} > s_m) / P(X_t = n)$$

$$= P(\tau_n \le t, \tau_{n+1} - t > s_1) P(\sigma_{n+2} > s_2, \dots, \sigma_{n+m} > s_m) / P(X_t = n)$$

$$= P(\tau_{n+1} - t > s_1 | X_t = n) P(\sigma_2 > s_2, \dots, \sigma_m > s_m)$$

$$= P(\sigma_1 > s) P(\sigma_2 > s_2, \dots, \sigma_m > s_m)$$

$$= P(\sigma_1 > s, \sigma_2 > s_2, \dots, \sigma_m > s_m)$$

これより, $\tau_{n+m} - t = (\tau_{n+1} - t) + \sigma_{n+2} + \cdots + \tau_{n+m}$ に注意すれば, 一般に $m \ge 1$ に対し, 次も成り立つ.

$$P(\tau_{n+m} > t + s | X_t = n) = P(\tau_m > s).$$

上でmをm+1に変えたものからmのときのを引けば、

$$P(\tau_{n+m} \le t + s < \tau_{n+m+1} | X_t = n) = P(\tau_m \le s < \tau_{m+1}) = P(X_s = m).$$

これを用いて, $n \ge 0, m \ge 1$ に対し,

$$P(X_{t} = n, X_{t+s} - X_{t} = m) = P(X_{t} = n, X_{t+s} = n + m)$$

$$= P(X_{t} = n)P(X_{t+s} = n + m | X_{t} = n)$$

$$= P(X_{t} = n)P(\tau_{n+m} \le t + s < \tau_{n+m+1} | X_{t} = n)$$

$$= P(X_{t} = n)P(X_{s} = m)$$

これを $n \ge 0$ について加えることにより、

$$P(X_{t+s} - X_t = m) = P(X_s = m) = e^{-\lambda} \frac{\lambda^m s^m}{m!}.$$

m=0 のときは $P(X_{t+s}-X_t=m)=e^{-\lambda s}$ を得るので、上に含まれる、実際、

$$P(\tau_n > t + s | X_t = n) = P(\tau_n > t + s | \tau_n \le t < \tau_{n+1}) = 0$$

より, 上の式 (2.1) から引くと,

$$P(X_{t+s} = n | X_t = n) = P(\tau_n < t + s < \tau_{n+1} | X_t = n) = e^{-\lambda s}.$$

従って,

$$P(X_t = n, X_{t+s} - X_t = 0) = P(X_t = n, X_{t+s} = n)$$

= $P(X_t = n)P(X_{t+s} = n | X_t = n)$
= $P(X_t = n)e^{-\lambda s}$.

これを n > 0 について加えれば $P(X_{t+s} - X_t = 0) = e^{-\lambda s}$.

最後に、独立増分性については、 $X_t = n$ の条件のもと、 $\tau_{n+1} - t, \sigma_{n+2}, \ldots, \sigma_{n+m}$ の分布が $\sigma_1, \sigma_2, \ldots, \sigma_m$ と一致することを用いれば、 $0 \le t_1 < \cdots < t_k$ に対し、

$$P(X_{t_0} = n_0, X_{t_1} - X_{t_0} = n_1, \dots, X_{t_k} - X_{t_{k-1}} = n_k)$$

$$= P(X_{t_0} = n_0, X_{t_1} = n_0 + n_1, \dots, X_{t_k} = n_0 + \dots + n_k)$$

$$= P(X_{t_0} = n_0)P(X_{t_1 - t_0} = n_1, \dots, X_{t_{k-t_0}} = n_1 + \dots + n_k)$$

これを繰り返して、独立増分性をえる.

$$P(X_{t_0} = n_0, X_{t_1} - X_{t_0} = n_1, \dots, X_{t_k} - X_{t_{k-1}} = n_k)$$

$$= P(X_{t_0} = n_0)P(X_{t_1-t_0} = n_1) \cdots P(X_{t_k-t_{k-1}} = n_k)$$

$$= P(X_{t_0} = n_0)P(X_{t_1} - X_{t_0} = n_1) \cdots P(X_{t_k} - X_{t_{k-1}} = n_k)$$

2.3 複合 Poisson 過程

定義 2.2 (X_t) が \mathbf{R}^d 上の複合 Poisson 過程であるとは, Lévy 過程で, X_t の特性関数が次で与えられる. μ_t を X_t の分布とすると,

$$\widehat{\mu}_t(z) := E[e^{i\langle z, X_t \rangle}] = \exp[tc(\widehat{\sigma}(z) - 1)].$$

c > 0, $\sigma = \sigma(dx)$ は \mathbf{R}^d 上の分布で, $\sigma(\{0\}) = 0$ を満たす.

更に、もっと直接的に次が成り立つ. $\mu_t = e^{-tc} \sum_{n\geq 0} \frac{(tc)^n}{n!} \sigma^{n*}$. 但し、 $\sigma^{0*} = \delta_0$. (特性関数が一致するので明らか.)

[複合 Poisson 過程の構成] (N_t) を c-Poisson 過程. (S_n) を \mathbf{R}^d 上で, $S_0=0$ を出発し, 1 歩の分布 σ を持つランダムウォークで, (N_t) とは独立とする. このとき $X_t:=S_{N_t}$ が求める複合 Poisson 過程となる. 実際, 特性関数は

$$E[e^{i\langle z,S_{N_t}\rangle}] = \sum_{n\geq 0} E[e^{i\langle z,S_n\rangle}]P(N_t = n) = \sum_{n\geq 0} \widehat{\sigma}(z)^n e^{-tc} \frac{(tc)^n}{n!} = \exp[tc(\widehat{\sigma}(z) - 1)].$$

ここで, $E[e^{i\langle z,S_n\rangle}]=\widehat{\sigma}(z)^n$ については, $S_n=\sum_{k=1}^n(S_k-S_{k-1})$ $(S_0=0)$ で, S_k-S_{k-1} の分布が σ , $\{S_k-S_{k-1}\}$ が独立であることを用いた.

2.4 Brown 運動 (Wiener 過程)

実数値確率過程 $(B_t)_{t\geq 0}$ が **Brown 運動 (Brownian motion)** であるとは, 連続な Lévy 過程 で, つまり見本関数が連続な Lévy 過程で, B_1 が正規分布 N(0,1) に従う. 即ち, 以下を満たすものをいう.

- (1) $B_0 = 0$ a.s.
- (2) (B_t) は連続, i.e., a.a. ω に対し, 見本関数 $B_t(\omega)$ が連続.

(3) $0 = t_0 < t_1 < \dots < t_n$ に対し、 $\{B_{t_k} - B_{t_{k-1}}\}_{k=1}^n$ は独立で、それぞれ、正規分布 $N(0, t_k - t_{k-1})$ に従う.

この定義は 1 次元であるが、独立な d 個の Brown 運動を成分として、 $B_t = (B_t^1, \dots, B_t^d)$ を d 次元 Brown 運動 という。(d 個の Brown 運動の直積確率空間を考えれば、独立となる。) この時、満たす性質は上とほぼ同じで、(d の最後で、「d 次元正規分布 d 次元正規分布 d 次元正規分布 d 次元正規分元 と変わるだけなので、それが定義だと言っても良い。

 $W = C([0,\infty) \to \mathbf{R}^1)$ とし、広義一様収束位相で定まる σ -加法族を W と表す.

さらに、 $w=w(t)\in W_0 \iff w\in W; w(0)=0$ とおく。 また、有限個の任意の時点 $\mathbf{t}_n=(t_1,\ldots,t_n); 0\leq t_1< t_2<\cdots< t_n<\infty$ と、 $A_n\in \mathcal{B}^n$ に対し、 $C(\mathbf{t}_n,A_n)=\{w\in W_0; (w(t_1),\ldots,w(t_n))\in A_n\}$ を**シリンダー集合 or 筒集合 (cylinder set)** という。シリンダー集合全体で生成される σ -加法族を、 W_0 と表す。(これは、W からの相対位相で定まる σ -加法族と一致することが知られている。)

定理 2.2 (Wiener 測度の存在と一意性) $(\Omega, \mathcal{F}) = (W_0, \mathcal{W}_0)$ として、この上に、 $B_t(w) = w(t)$ が Brown 運動となるような確率測度 P_B が唯一つ存在する.この P_B を Wiener 測度という.

この証明の概要については節の最後に述べる.

今後, Brown 運動というときには、この Wiener 測度のもとでのものを考えるので、この Brown 運動を Wiener 過程 (Wiener process) ともいう.

また, d 次元 Brown 運動 $B_t = (B_t^1, \ldots, B_t^d)$ の分布は, $W_0^d \ni w; w \in C([0, \infty) \to \mathbf{R}^d), w(0) = 0$ 上の確率測度となり, これを d 次元 Wiener 測度 という.

この分布は次のように与えられる.

$$p_t(x) := \frac{1}{\sqrt{2\pi t^d}} e^{-|x|} \quad (x = (x_1, \dots, x_d) \in \mathbf{R}^d, \ |x| = \sqrt{x_1^2 + \dots + x_d^2})$$

に対し, $P(B_t \in dx) = p_t(x)dx$ となる. この $g_t(x)$ を d 次元正規分布 $N_d(0,t)$ の密度関数という. また, この正規分布の**特性関数 (characteristic ft)** は, 次で与えられる.

$$\varphi(z) = \varphi_{B_t}(z) := E[e^{iz \cdot B_t}] = e^{-t|z|^2/2} \quad (z \in \mathbf{R}^d).$$

但し, $z \cdot B_t = z_1 B_t^1 + \cdots + z_d B_t^d$.

更に,1次元の時,

$$p_t(x,y) := p_t(y-x) = \frac{1}{\sqrt{2\pi t}}e^{-(y-x)^2/(2t)}$$

とすると、Brown 運動の有限次元分布は $0 < t_1 < t_2 < \cdots < t_n$ と $A_k \in \mathcal{B}^1$ に対し、

$$P(B_{t_k} \in A_k) = \int_{A_1} dy_1 p_{t_1}(0, y_1) \int_{A_2} dy_2 p_{t_2 - t_1}(y_1, y_2) \cdots \int_{A_n} dy_n p_{t_n - t_{n-1}}(y_{n-1}, y_n)$$

で与えられる.

これは、独立増分性より、 $t_0 = 0$ として、

$$P(B_{t_k} - B_{t_{k-1}} \in A_k, k = 1, 2, \dots, n) = \prod_{k=1}^n \int_{A_k} p_{t_k - t_{k-1}}(x_k) dx_k$$

となるので、変数変換 $x_k=y_k-y_{k-1}$ $(y_0=0)$ を用いれば良い. 但し、 $\{B_{t_1}\in A_1, B_{t_2}\in A_2\}==\{B_{t_1}\in A_1, B_{t_2}-B_{t_1}\in A_2-A_1\}$ に注意. A_2-A_1 は元毎の差の全体で、差集合とは異なる.

以下, (\mathcal{F}_t) を Brown 運動 (B_t) による標準情報系とする.

[Brown 運動の性質]

- (1) $EB_t^{2n} = (2n-1)!!t^n, EB_t^{2n-1} = 0 \ (n \ge 1).$
- (2) $0 \le s < t$ に対し、 $B_t B_s$ と \mathcal{F}_s は独立. これは、独立増分性と同値. また、これから、 (B_t) が後で述べるマルチンゲールであることが分る. i.e., $0 \le s < t \Rightarrow E[B_t - B_s | \mathcal{F}_s] = 0$
- (3) 共分散 $E[B_tB_s] = t \land s \ (s,t > 0).$
- (4) 連続過程 (X_t) が Brown 運動 $\stackrel{\text{def}}{\Longleftrightarrow} \forall 0 \leq s < t, E[e^{iz(X_t X_s)}|\mathcal{F}_s] = e^{-(t-s)z^2/2}$. 但し、 (\mathcal{F}_t) は (X_t) による標準的情報系である.
- (5) 次の変換で Brown 運動は不変. (a > 0 は 1 つ固定する.)

$$B_t^a = B_{a+t} - B_a, \ \overline{B_t} = -B_t, \ S^a(B)_t = \sqrt{a}B_{t/a}.$$

但し, $S^a(B)_t$ を**スケール変換**という.

(6) $[T_1, T_2]$ での Brown 運動の全変動量は a.s. で無限大, i.e., 分割 $\Delta = \{t_k\}; T_1 = t_0 < t_1 < \cdot < t_2 < t_3 < t_4 < \cdot < t_4 < t_4 < \cdot < t_4 < \cdot < t_4 < \cdot < t_4 <$

$$V = \sup_{\Delta} \sum_{k=1} |B_{t_k} - B_{t_{k-1}}| = \infty$$
 a.s.

(7) $\forall \varepsilon > 0$, $(1/2 - \varepsilon)$ -Hölder 一様連続性をもつ, 即ち, $\gamma > 0$ に対し,

$$\lim_{h\to 0} \sup_{s\neq t; |t-s|\leq h} \frac{|B_t-B_s|}{|t-s|^{\gamma}} = 0 \text{ or } \infty \text{ a.s. if } \gamma < 1/2 \text{ or } \gamma \geq 1/2.$$

- (8) a.s. で Brown 運動の見本関数は全ての時点で微分不可である.
- (9) (B_t) を d 次元 Brown 運動とする. T を d 次直交行列とすれば, (TB_t) も Brown 運動とな る. また, $\tau_S:=\inf\{t>0; B_t\in S=S^{d-1}_r\}$ を球面 $S=\partial B^d(0,r)$ への到達時間とすれば、 $B_{\tau_S} = B_{\tau_S(\omega)}(\omega)$ の分布は球面 S 上の一様測度となる.

他に次の性質を満たすことが知られている. (証明は略する.)

• $X_t = tB_{1/t}$ も Brown 運動. 但し, $X_0 = 0$ とする.

$$\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{2t \log \log(1/t)}} = 1 \quad \text{a.s.}$$

更に対称性より、 $\liminf_{t \downarrow 0}$ は -1 で、スケール変換により、

$$\limsup_{t \uparrow \infty} \frac{B_t}{\sqrt{2t \log \log t}} = 1 \quad \text{a.s.}$$

• $\forall \varepsilon > 0$, $(1/2 - \varepsilon)$ -Hölder 一様連続性をもつが, より詳しくは次を満たす.

$$\lim_{h \to 0} \sup_{s \neq t; |t-s| < h} \frac{|B_t - B_s|}{\sqrt{2|t-s|\log(1/|t-s|)}} = 1.$$

[Brown 運動の構成] 3 通りの方法が知られているが、ここでは一番、易しい方法で述べる. $t \in [0,1]$ で示せば十分である. [0,T] も同様で、一意性より、 $[0,\infty)$ に拡張できる. $D = \bigcup_{n>1} \{k/2^n; k=0,1,\ldots,2^n\}$ を [0,1] 内の 2 進有理数全体とする.

まず、 \mathbf{R}^{∞} 上への確率空間の拡張定理である Kolmogorov の拡張定理 を用いることにより、 \mathbf{R}^{D} ($\in w = w(t): D$] $\to \mathbf{R}$ 関数) 上に、 $X_{t}(w) = w(t)$ の任意の有限次元分布が Brown 運動と同じ式で与えられる確率測度 P_{0} が構成できる。(D の元に番号付けをして、 $\forall n$ 個の時点で、有限次元分布が決まり、それが Kolmogorov の拡張定理の両立条件を満たすことがいえるので、D 全体で、上の条件を満たす確率測度の存在がいえる。)

更に, 次の Kolmogorov の正規化定理 の条件を満たすことがいえるので, (X_t) は $D \perp$ a.s. で一様連続となり, その右連続化したもの $\widetilde{X_t} = \lim_{r\downarrow t; r\in D} X_r$ が連続変形となり, $B_t = \widetilde{X_t}$ が求めるものとなる.

定理 2.3 (Kolmogorov の正規化定理・連続変形定理)

(1) 一般に Banach 空間 $(B, \|\cdot\|)$ に値をとる確率過程 $\{X_t\}_{t\in D}$ が,

$$^{\exists}C, \alpha, \beta > 0; E||X_t - X_s|^{\alpha} \le C|t - s|^{1+\beta}$$

を満たすなら, X_t は $D \perp a.s.$ で, 一様連続である.

(2) $\{X_t\}_{t\in[0,1]}$ が $\forall s,t\in[0,1]$ に対し、上と同じ不等式を満たせば、連続変形 $\{\widetilde{X_t}\}_{t\in[0,T]}$ が一意的に存在し、しかも $\forall \gamma < \beta/\alpha$ に対し、 γ -Hölder 一様連続性をもつ.

$$\lim_{h \to 0} \sup_{s \neq t: |t-s| < h} \frac{\|X_t - X_s\|^{\gamma}}{|t-s|} = 0 \quad \text{a.s.}$$

ここで、次章以降で必要となる特性関数の性質について、いくつか述べておく.

 \mathbf{R}^d 上の確率測度, つまり, 分布の全体を $\mathcal{P}(\mathbf{R}^d)$ で表す.

特性関数 (c.f.=charcteristic function) $\widehat{\mu}(z) := \int_{\mathbf{R}^d} e^{i\langle z,x\rangle} \mu(dx)$ で, $\mu,\nu \in \mathcal{P}(\mathbf{R}^d)$ の畳み込み (convolution)

$$\mu * \nu(A) := \int_{\mathbf{R}^d} \int_{\mathbf{R}^d} 1_A(x+y) \mu(dx) \nu(dy) = \int_{\mathbf{R}^d} \mu(A-y) \nu(dy) = \int_{\mathbf{R}^d} \nu(A-x) \mu(dx).$$

 $\widehat{\mu*\nu}(z)=\widehat{\mu}(z)\widehat{\nu}(z)$ は容易に分る. また, 独立確率変数の和の分布は畳み込みとなる, i.e., 確率変数 X,Y が独立で, それぞれの分布が μ,ν なら, X+Y の分布は, $\mu*\nu$ となる. 実際, X+Y の特性関数が $\widehat{\mu\nu}=\widehat{\mu*\nu}$ となるからである. $E[e^{i\langle z,X+Y\rangle}]=E[e^{i\langle z,X\rangle}]E[e^{i\langle z,Y\rangle}]=\widehat{\mu}(z)\widehat{\nu}(z)$.

ちなみに、特性関数を用いて元の分布を表すことができる (Lévy の反転公式) ので、 $\mu \in \mathcal{P}(\mathbf{R}^d)$ と $\widehat{\mu}$ は 1 対 1 に対応する. つまり、 $\mu, \nu \in \mathcal{P}(\mathbf{R}^d)$ に対し、 $\widehat{\mu} = \widehat{\nu}$ なら、 $\mu = \nu$ (一意性定理).

更に、特性関数の収束と分布の収束についても、以下の結果を述べておく. (これらの証明については、講義ノート「確率論の基礎」を参照してもらいたい.)

定理 2.4 $\mu_n, \mu \in \mathcal{P}(\mathbf{R}^d)$ に対し, $\mu_n \to \mu$ なら $\widehat{\mu}_n \to \widehat{\mu}$ (広義一様)

但し,
$$\mu_n \to \mu \iff {}^{\forall} f \in C_b(\mathbf{R}^d), \ \mu_n(f) := \int f d\mu_n \to \mu(f).$$

定理 2.5 (Lévy の連続性定理) $\mu_n \in \mathcal{P}(\mathbf{R}^d)$ とする. $\exists \varphi; \widehat{\mu}_n \to \varphi$ (各点収束) かつ, φ が原点で連続なら $\exists \mu \in \mathcal{P}(\mathbf{R}^d); \varphi = \widehat{\mu}, \mu_n \to \mu$, しかも $\widehat{\mu}_n \to \widehat{\mu}$ (広義一様).

系 2.1 (Glivenko の定理) $\mu_n, \mu \in \mathcal{P}(\mathbf{R}^d)$ に対し、 $\widehat{\mu}_n \to \widehat{\mu}$ (各点収束) なら、 $\mu_n \to \mu$.

3 Lévy 過程と無限分解可能分布

Lévy 過程の分布は無限分解可能という性質を持つ. この性質により, その特性関数の特徴づけとして, Lévy-Khintchine の標準形を与えることができる.

3.1 無限分解可能分布

 \mathbf{R}^d 上の確率測度, つまり, 分布の全体を $\mathcal{P}(\mathbf{R}^d)$ で表す.

定義 3.1 $\mu \in \mathcal{P}(\mathbf{R}^d)$ が無限分解可能分布 (infinitely divisible distribution) であるとは, $\forall n \geq 2, \exists \mu_n \in \mathcal{P}(\mathbf{R}^d) : \mu = \mu_n^{n*}.$ この分布全体を $I(\mathbf{R}^d)$ で表す.

これは、特性関数を $\hat{\mu}$ で表せば、 $\forall n \geq 2$ に対し、 $\hat{\mu}^{1/n}$ が特性関数となることと同値である. (ここで、n 乗根は、下に述べる意味である.)

一様分布, 二項分布は無限回分解可能ではない. また, 台が有界な無限分解可能分布は δ 分布のみである.

以下に,無限分解可能分布の簡単に分かる性質をいくつか挙げる.

・ $\mu \in I(\mathbf{R}^d)$ なら, $\widehat{\mu} \neq 0$, i.e., 零点を持たない.

[**証**] 定義より, $\widehat{\mu_n}^n = \widehat{\mu}$ なので,

$$\varphi(z) := \lim_{n \to \infty} |\widehat{\mu_n}(z)|^2 = \lim_{n \to \infty} |\widehat{\mu}(z)|^{2/n} = \mathbb{1}_{\{\widehat{\mu}(z) \neq 0\}}.$$

また, $\mu_-(dx):=\mu(-dx):\mu$ の双対, $\mu_2:=\mu*\mu_-:\mu$ の対称化とおけば, $\widehat{\mu_-}=\widehat{\mu}(-\cdot)=\overline{\widehat{\mu}}, \widehat{\mu_2}=|\widehat{\mu}|^2$ となるので, φ は特性関数の極限. $\widehat{\mu}(0)=1$ で, z=0 の近傍では, $\varphi=1$ となり, Lévy の連続性定理より, φ も特性関数で, 連続. 上の式から, 結局, $\varphi\equiv1$ となり, $\widehat{\mu}\neq0$.

・ $\mu \in I(\mathbf{R}^d)$ なら、上のことから、 $^{\exists_1}f(z):\mathbf{R}^d\to\mathbf{C}$: 連続; $f(0)=0,\widehat{\mu}(z)=e^{f(z)}$ 、かつ、 $^{\forall}n\geq 1,^{\exists_1}g_n(z):\mathbf{R}^d\to\mathbf{C}$: 連続; $g_n(0)=1,g_n(z)^n=\widehat{\mu}(z)$ が言えるので、以下、 $f=\log\widehat{\mu}$ 、 $g_n=\widehat{\mu}^{1/n}$ と表す。 $(g_n=e^{f/n}$ である。)これにより、 $\widehat{\mu}^t=\exp[t\log\widehat{\mu}]$ と定義し、これが特性関数の時(後で示すように、実際そうなるが)、その分布を μ^{t*} と表す。このとき、 $\widehat{\mu^{t*}}=\widehat{\mu}^t$.

[証] これは $\hat{\mu}$ を一般に $\varphi: \mathbf{R}^d \to \mathbf{C}; \varphi \neq 0, \varphi(0) = 1$ に変えて、成り立つのでそれで示す。 $z \in \mathbf{R}^d$ を固定し、 $t \in [0,1]$ に対し、 $\varphi(tz)$ の複素対数関数の枝 $h_z(t) = \log |\varphi(tz)| + i \arg \varphi(tz)$ を連続かつ $h_z(0) = 0$ と選ぶ。 $h_z(t)$ は一意的で、 $\arg \varphi(tz)$ は t = 0 のとき、0 として連続に選んだ偏角である。 $f(z) = h_z(1) = \log |\varphi(z)| + i \arg \varphi(z)$ と定義して、この連続性を示す。 z_0 を固定し、 $z \neq z_0$ に対し、 $w_z(t): [0,3] \to \triangle(0,z_0,z)$ を t = 0,1,2,3 に対し、 $w_z(t) = 0,z_0,z,0$ でその間を線分で繋いだものとする。 $\{\varphi(tz_0); t \in [0,1]\}$ がコンパクトで、 $\varphi \neq 0$ より、0 との間に距離を持つ。 $z \to z_0$ のとき、 $\max_{0 \leq t \leq 1} |\varphi(tz) - \varphi(tz_0)| \to 0$ 。従って、 $\exists U(z_0): z_0$ の近傍; $\forall z \in U(z_0)$,閉曲線 $\{\varphi(w_z(t)); t \in [0,3]\}$ の原点の周りの回転数は 0 となり、 $\arg \varphi(w_z(3)) = 0$ となる。よって、 $\mathrm{Im}\, f(z) = \arg \varphi(z) = \arg \varphi(w_z(2))$ ($\forall z \in U(z_0)$) で、 $z \to z_0$ なら $\mathrm{Im}\, f(z) \to \mathrm{Im}\, f(z_0)$ 。Re f(z) の連続性は明らかなので、f(z) は連続。また $\tilde{f}(z)$ 連続; $\tilde{f}(0) = 0, e^{\tilde{f}(z)} = \varphi(z)$ とすると、 h_z の一意性より、 $h_z(t) = \tilde{f}(tz)$ で、 $\tilde{f}(z) = h_z(1) = f(z)$. $\hat{\mu}$ の n 乗根 g_n についても同様に示せる.

- ・ $\mu \in I(\mathbf{R}^d)$ のとき, $\mu = \mu_n^{n*}$ なる分布 μ_n は一意で, $\widehat{\mu_n} = \widehat{\mu}^{1/n}$, 即ち, $\mu_n = \mu^{1/n*}$. [証] $\widehat{\mu} \neq 0$ と上の証明の結果から明らか.
- ・ $\mu_n \in I(\mathbf{R}^d) \to \mu$ なら, $\mu \in I(\mathbf{R}^d)$.

[証] $\forall k \geq 2$ に対し、 $\hat{\mu}^{1/k}$ も特性関数を示せば良い.まず $\hat{\mu} \neq 0$ を示す. $\hat{\mu}_n \to \hat{\mu}$ より、 $|\hat{\mu}_n|^{2/k} \to |\hat{\mu}|^{2/k}$. $|\hat{\mu}_n|^{2/k} = |\hat{\mu}_n^{1/k}|^2$ で、これは特性関数で、 $|\hat{\mu}|^{2/k}$ が連続なので、これも特性関数、よって、 $|\hat{\mu}|^2$ を特性関数とする分布は無限分解可能分布.故に、 $\hat{\mu} \neq 0$ よって上で示したように、 $\hat{\mu}^{1/k}$ が一意に存在し、連続で、 $\hat{\mu}_n \to \hat{\mu}$ なので、 $\hat{\mu}_n^{1/k} \to \hat{\mu}^{1/k}$. よって、 $\hat{\mu}^{1/k}$ も特性関数.

・ $\mu_1, \mu_2 \in I(\mathbf{R}^d)$ なら, $\mu_1 * \mu_2 \in I(\mathbf{R}^d)$.

・ $\mu \in I(\mathbf{R}^d)$ なら、 $\forall t \geq 0, \mu^{t*}$ が定義され、 $\mu^{t*} \in I(\mathbf{R}^d)$.

[証] $\widehat{\mu}^{1/m} = (\widehat{\mu}^{1/(mn)})^n \in I(\mathbf{R}^d)$. よって, $\widehat{\mu}^{n/m} \in I(\mathbf{R}^d)$. $r_n \in \mathbf{Q}_+ \to t > 0$ をとれば, $\widehat{\mu}^{r_n} \to \widehat{\mu}^t$, かつ, $\widehat{\mu}^t$ は連続なので, $\exists_1 \mu_t \in \mathcal{P}(\mathbf{R}^d)$; $\widehat{\mu}_t = \widehat{\mu}^t$. 従って, $\mu^{t*} \in I(\mathbf{R}^d)$.

定理 3.1 (X_t) を法則の意味の Lévy 過程とすると, X_t の分布 $\mu_t = P \circ X_t^{-1} \in I(\mathbf{R}^d)$ で, $\mu_1 = \mu$ と表すと, $\mu_t = \mu^{t*}$. 逆に, $\mu \in I(\mathbf{R}^d)$ があるとき, $\exists (X_t)$ 法則の意味の Lévy 過程が存在し, $X_t \stackrel{(\mathrm{d})}{=} \mu^{t*}$. しかも, 法則同等を除いて一意. 即ち, (Y_t) も同じ条件を満たせば, (X_t) と法則同等, i.e., 有限次元分布が等しい; $(X_{t_1}, X_{t_2}, \dots, X_{t_n}) \stackrel{(\mathrm{d})}{=} (Y_{t_1}, Y_{t_2}, \dots, Y_{t_n})$.

[証明] t>0 に対し、 $t_k^n=kt/n$ とすれば、 $t_0^n=0$ で、 $X_0=0$ より、 $X_t=\sum_{k=1}^n(X_{t_k^n}-X_{t_{k-1}^n})$

で、独立増分性より、 $\mu_t \in I(\mathbf{R}^d)$ は明らか、 $X_1 \stackrel{(\mathrm{d})}{=} \mu = \mu_1 \in I(\mathbf{R}^d)$ より、 $X_{1/n} \stackrel{(\mathrm{d})}{=} \mu_{1/n} = \mu^{1/n*}$ で、 $X_{m/n} \stackrel{(\mathrm{d})}{=} \mu^{m/n*}$ なので、有理数で近似すれば、 $\forall t > 0, X_t \stackrel{(\mathrm{d})}{=} \mu^{t*}$.

逆に、 $\mu \in I(\mathbf{R}^d)$ に対応する法則の意味の Lévy 過程があることをいうには、証明の後に述べる Kolmogorov の拡張定理を用いる. $0 \le t_1 < t_2 < \cdots < t_n, B_k \in \mathcal{B}^d, k = 1, 2, \ldots, n$ に対し、

$$\mu_{t_1,\dots,t_n}(B_1 \times \dots \times B_n)$$

$$:= \int_{\mathbf{R}^d} \mu^{t_1*}(dy_1) 1_{B_1}(y_1) \int_{\mathbf{R}^d} \mu^{t_2-t_1*}(dy_2) 1_{B_2}(y_1+y_2) \cdots \int_{\mathbf{R}^d} \mu^{t_n-t_{n-1}*}(dy_n) 1_{B_n}(y_1+\dots+y_n)$$

と定義する. $\mu^{s*}*\mu^{t*}=\mu^{s+t*}$ から, これが両立条件を満たすことが分かるので, $^{\exists_1}P$: 確率測度 on $\Omega=(\mathbf{R}^d)^{[0,\infty)};~X_t(\omega):=\omega(t)$ に対し, $X_t\stackrel{(\mathrm{d})}{=}\mu^{t*}$. しかも,

$$E\left[e^{i\sum_{k=1}^{n}\langle z_{k}, X_{t_{k}} - X_{t_{k-1}}\rangle}\right] = \prod_{k=1}^{n} \int_{\mathbf{R}^{d}} e^{i\langle z_{k}, y_{k}\rangle} \mu^{t_{k} - t_{k-1}*}(dy_{k}) = \prod_{k=1}^{n} E\left[e^{i\langle z_{k}, X_{t_{k}} - X_{t_{k-1}}\rangle}\right]$$

となり、独立増分性を得る. 最後の等号は、その前の等式で、各kに対し、 z_k 以外を0とすれば良い. また、確率連続性は $t\downarrow 0$ のとき、

$$P(|X_t| > \varepsilon) \to 0 \iff \mu_t \to \delta_0 \iff \widehat{\mu}(z)^t \to 1$$

で $\mu \in I(\mathbf{R}^d)$ は零点を持たないので、明らか、最後に、 (Y_t) も同じ条件を満たせば、 $X_t - X_s \stackrel{\text{(d)}}{=} Y_t - Y_s \stackrel{\text{(d)}}{=} \mu^{t-s*}$ で、更に、上の式の前半から、 $(X_{t_0}, X_{t_1} - X_{t_0}, \dots, X_{t_n} - X_{t_{n-1}}) \stackrel{\text{(d)}}{=} (Y_{t_0}, Y_{t_1} - Y_{t_0}, \dots, Y_{t_n} - Y_{t_{n-1}})$. 更に、 $(X_{t_0}, X_{t_1}, \dots, X_{t_n}) \stackrel{\text{(d)}}{=} (Y_{t_0}, Y_{t_1}, \dots, Y_{t_n})$.

定理 3.2 (Kolmogorov の拡張定理) $\Omega = (\mathbf{R}^d)^{[0,\infty)} \ni \omega, \ X_t(\omega) := \omega(t)$ に対し、 \mathcal{F} を Kolmogorov の σ 加法族、即ち、筒集合 $C = \{X_{t_k} \in B_k, k = 1, \ldots, n\}$ の全体から生成される σ -加法族とする。 $0 \le t_1 < t_2 < \cdots < t_n$ に対し、 $\mathcal{B}((\mathbf{R}^d)^n)$ 上の分布 μ_{t_1,\ldots,t_n} が与えられていて、次の両立条件を満たすとする: $B_1,\ldots,B_n \in \mathcal{B}^1$ とある $k=1,2,\ldots,n$ に対し、 $B_k = \mathbf{R}^d$ のとき、

$$\mu_{t_1,\dots,t_n}(B_1\times\dots\times B_n)=\mu_{t_1,\dots,t_{k-1},t_{k+1},\dots,t_n}(B_1\times\dots\times B_{k-1}\times B_{k+1}\times\dots\times B_n)$$

このとき、 $\exists P$: 確率測度 on (Ω, \mathcal{F}) ; $(X_{t_1}, \dots, X_{t_n}) \stackrel{\text{(d)}}{=} \mu_{t_1, \dots, t_n}$.

これの証明は、筒集合の全体 \mathcal{C} 上に、 $C=\{X_{t_k}\in B_k, k=,1,\ldots,n\}\in \mathcal{C}$ に対し、 $Q(C):=\mu_{t_1,\ldots,t_n}(B_1\times\dots\times B_n)$ と定義すれば、 $Q:\mathcal{C}\to [0,1]$; $Q((\mathbf{R}^d)^{[0,\infty)})=1$ で、有限加法性を満たす。後は、連続性 $A_n\in \mathcal{C}$; $A\downarrow\emptyset$ に対し、 $Q(A_n)\to 0$ を示せば、測度の拡張定理により、 $F=\sigma(\mathcal{C})$ 上の確率測度 P が一意に存在し、P=Q on \mathcal{C} となる。連続性についても、背理法で、 $Q(A_n)\downarrow\delta>0$ として、分布 μ_{t_1,\ldots,t_n} の正則性を用いて、 $B_1\times\cdots\times B_n$ に含まれる cpt 集合を取ることによって、 $\bigcap A_n\neq\emptyset$ が示せるので、矛盾となる。詳細については、I. カラザス、S. E. シュレーブ 著「ブラウン運動と確率積分」シュプリンガー(2001)の p53 を参照.

3.2 Lévy-Khintchine の標準形

定理 3.3 (X_t) が Lévy 過程であることは, $\forall t \geq 0, X_t$ の特性関数 $\widehat{\mu}_t(z) := E[e^{i\langle z, X_t \rangle}]$ $(i = \sqrt{-1})$ が次の Lévy-Khintchine の標準形 を持つことと同値となる. $\widehat{\mu}_t(z) = e^{t\psi(z)}$;

$$\psi(z) = -\frac{1}{2}\langle Az, z\rangle + + \int_{\mathbf{R}^d} (e^{i\langle z, x\rangle} - 1 - i\langle z, x\rangle \mathbf{1}_{\{|x|<1\}}) \nu(dx) + i\langle \gamma, z\rangle.$$

ここで,

・ $A = (a_{ik})_{i,k \le d}$ は非負定値対称行列.

このとき, $\exists \sigma = (\sigma_\ell^j)_{\ell \leq m, j \leq d}; \, a_{jk} = \sum_{\ell \leq m} \sigma_\ell^j \sigma_\ell^k$ と表されることと同値である. $(\to$ 問)

・ $\nu = \nu(dx)$ は **Lévy 測度** と呼ばれる \mathbf{R}^d 上の測度で、 $\nu(\{0\}) = 0$, $\int_{\mathbf{R}^d} (1 \wedge |x|^2) \nu(dx) < \infty$ を満たす.

 $\cdot \gamma = (\gamma_i)_{i < d} \in \mathbf{R}^d$

この表現の3つ組 (A, ν, γ) は一意的に定まる.

ちなみに、もし、 ν が $\int_{|x|<1} |x|\nu(dx) < \infty$ を満たすなら、

$$\psi(z) = -\frac{1}{2}\langle Az, z \rangle + \int_{\mathbf{R}^d} (e^{innz,x} - 1)\nu(dx) + i\langle \gamma_0, z \rangle.$$

但し, $\gamma_0 = \gamma - \int_{|x|<1} x\nu(dx)$ で、このとき, γ_0 は、**ずれ (drift)** と呼ばれる.

問 上の A の表現を示せ.

A を対角化する直交行列を $U=(u_{jk})$, 固有値を $\lambda_k\geq 0$ $(k\leq d)$ とすれば, ${}^tUAU=\mathrm{diag}~(\lambda_\ell)$, i.e., $A=U\mathrm{diag}~(\lambda_\ell){}^tU$ より, $a_{jk}=\sum_{\ell\leq d}\lambda_\ell u_{j\ell}u_{k\ell}$ となる. よって, 固有値の内, 正のものが m 個, i.e., $\ell\leq m$ に対し, $\lambda_{k_\ell}>0$ として, 各 $j\leq d$ に対し, $\sigma_\ell^j=\sqrt{\lambda_{k_\ell}}u_{jk_\ell}$ とおけば $a_{jk}=\sum_{\ell\leq m}\sigma_\ell^j\sigma_\ell^k$ となる.

上の定理は、無限分解可能分布 μ の言葉で言い換えれば、次のようになる.

$$\mu \in I(\mathbf{R}^d) \iff \widehat{\mu}(z) = e^{\psi(z)}$$

複合 Poisson 分布の特性関数では

$$\psi(z) = \log \widehat{\mu}(z) = c(\widehat{\sigma} - 1) = c \int_{\mathbf{R}^d} (e^{i\langle z, x \rangle} - 1) \sigma(dx)$$

において, $A=0, \nu=c\sigma, \gamma=c\int_{|x|<1}x\sigma(dx)$ とおけば, 標準形を得る.

[標準形の証明]

まず、この形の特性関数 $\varphi=e^{\psi}$ をもつ分布が存在し、無限分解可能分布であることは、大きさ 1/n 以下の跳びを除いたものは、Gauss 分布と複合 Poisson 分布の畳み込みとなるので、無限分解 可能分布で、その特性関数 $\hat{\mu}_n \to \varphi$ で、 φ は連続なので、特性関数で、 $\exists_1 \mu \in \mathcal{P}(\mathbf{R}^d)$; $\hat{\mu}=\varphi$. よって、 $\mu_n \to \mu$ となり、 μ も無限分解可能分布.

次に**表現の一意性** について. $\psi(z) = \log \varphi(z)$ が (A, ν, γ) による標準形で表されているとする.

$$\frac{1}{s^2}|e^{i\langle sz,x\rangle}-1-i\langle sz,x\rangle|\leq \frac{1}{2}|z|^2|x|^2,\quad \to 0\ (s\to\infty)$$

より、Lebesgue の収束定理を用いて

$$\lim_{s\to\infty}\frac{1}{s^2}\psi(sz)=-\frac{1}{2}\langle z,Az\rangle.$$

これから, A は, μ から定まるので, 一意である.

次に $\psi_d(z) = \psi(z) + \langle z, Az \rangle/2$ とおき, $C = [-1, 1]^d$ とすると,

$$\int_C (\psi_d(z) - \psi_d(z+w)) dw = \int_{\mathbf{R}^d} e^{i\langle z, x \rangle} \rho(dx), \quad \rho(dx) = 2^d \left(1 - \prod_{j=1}^d \frac{\sin x_j}{x_j} \right) \nu(dx)$$

が示せる. これと $\rho(dx) \leq C(1 \wedge |x|^2)\nu(dx)$ より $(\to$ 問), ρ は有限測度で, その Fourier 変換が上の左辺となる. 従って, ρ は ψ_d から一意に、つまり, ν が μ から一意に定まることになる. よって γ も一意となる. 上の変換式については, $D=\{|x|<1\}$ として,

$$\int_{C} (\psi_d(z) - \psi_d(z+w)) dw = \int_{C} dw \int_{\mathbf{R}^d} (e^{i\langle z, x \rangle} - e^{i\langle z+w, x \rangle} + i\langle w, x \rangle 1_D(x)) \nu(dx)$$

で、D上では、 $i\langle w, x\rangle e^{i\langle z, x\rangle}$ を加えて、引けば、

 $|e^{i\langle z,x\rangle}-e^{i\langle z+w,x\rangle}+i\langle w,x\rangle|\leq |1-e^{i\langle w,x\rangle}+i\langle w,x\rangle)|+|i\langle w,x\rangle(e^{i\langle z,x\rangle}-1)|\leq \frac{1}{2}|w|^2|x|^2+|w||z||x|^2$ より, dw と $\nu(dx)$ の積分の交換ができる.しかも,

$$\int_C (e^{i\langle z,x\rangle} - e^{i\langle z+w,x\rangle} + i\langle w,x\rangle 1_D(x))dw = e^{i\langle z,x\rangle} \int_C (1 - e^{i\langle w,x\rangle})dw = 2^d e^{i\langle z,x\rangle} \left(1 - \prod_{j=1}^d \frac{\sin x_j}{x_j}\right)$$

より求める式を得る.

問 3.1 $|x| \le 1$ のとき, $1 - \prod_{j=1}^d \frac{\sin x_j}{x_j} \le C|x|^2$ を示せ.

x > 0 なら $\sin x \ge x - x^3/3!$ なので, d = 1 なら明らか. 一般も次から言える.

$$1 - \prod_{j=1}^{d} \frac{\sin x_j}{x_j} = \sum_{k=1}^{d} \left(1 - \frac{\sin x_k}{x_k} \right) \prod_{j=1}^{k-1} \frac{\sin x_j}{x_j}$$

最後に、表現可能について: 複合 Poisson 分布 μ_n を

$$\widehat{\mu_n}(z) := \exp[n(\widehat{\mu}(z)^{1/n} - 1)] = \exp\left[n\int_{\mathbf{R}^d \setminus \{0\}} (e^{iz \cdot x} - 1)\mu^{1/n*}(dx)\right]$$

で定義すれば、 $(\mu^{1/n*}(\{0\}) = 0$ とは限らないが、これを $\mathbf{R}^d \setminus \{0\}$ に制限したものを、 ν_n とおいて上で置き換えて良く、複合 Poisson となることに注意.) $n \to \infty$ のとき、

$$\widehat{\mu_n}(z) = \exp[n(e^{n^{-1}\log\widehat{\mu}(z)} - 1)] = \exp[n(n^{-1}\log\widehat{\mu}(z) + o(1/n)] \to \widehat{\mu}(z)$$

より, $\mu_n \to \mu$. μ_n は標準形で表されて, 次の次に述べる標準形の収束定理より, μ も標準形で表される.

上の証明から、次がすぐ言える.

定理 3.4 無限分解可能分布は複合 Poisson 分布の極限として表される.

標準形のままでは扱い辛いので、次の**第 2 標準形**を与える. $\theta(x)$ を \mathbf{R}^d 上の関数で, $|x| \le 1$ で 1, $|x| \ge 2$ では 0 でその間を |x| に対し、線分で繋いだグラフをもつ連続関数とする.

$$\psi(z) = -\frac{1}{2}\langle Az, z \rangle + \int_{\mathbf{R}^d} (e^{i\langle z, x \rangle} - 1 - i\langle z, x \rangle \theta(x)) \nu(dx) + i\langle \beta, z \rangle.$$

当然, 標準形と第2標準形は同値で, 互いに書き換え可能である.

定理 3.5 (標準形の収束定理) $\mu_n \in I(\mathbf{R}^d)$ が (A_n, ν_n, β_n) による第 2 標準形をもつとき, \mathbf{R}^d 上の分布 μ に対し, $\mu_n \to \mu$ と次は同値.

 $\mu \in I(\mathbf{R}^d)$ は (A, ν, β) による第 2 標準形をもち、原点の近傍で 0 である有界連続関数 f に対し、

$$\lim_{n \to \infty} \int_{\mathbf{R}^d} f(x) \nu_n(dx) = \int_{\mathbf{R}^d} f(x) \nu(dx).$$

更に、 $\forall \varepsilon > 0$ 、非負定値対称行列 $A_{n,\varepsilon}$ を $\langle z, A_{n,\varepsilon}z \rangle = \langle z, A_nz \rangle + \int_{|x| < \varepsilon} \langle x, z \rangle^2 \nu_n(dx)$ で定義すると、 $\forall z \in \mathbf{R}^d$ 、 $\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} \langle z, A_{n,\varepsilon}z \rangle = \lim_{\varepsilon \downarrow 0} \liminf_{n \to \infty} \langle z, A_{n,\varepsilon}z \rangle = \langle z, Az \rangle$. $\lim_{n \to \infty} \beta_n = \beta$.

[証明] (⇒) μ_n が第 2 標準形をもち, $\mu_n \to \mu$ なら, μ もそうで, 各係数に関する上の収束が成り立つことを示そう. まず $\mu \in I(\mathbf{R}^d)$ となり, $\widehat{\mu}(z)$ が零点をもたないので, $\psi(z) = \log \widehat{\mu}(z)$ が存在し, 特性関数の収束より, $\psi_n(z) = \log \widehat{\mu}_n(z) \to \psi(z)$ (広義一様) となる.

$$g(z,x) := e^{i\langle z,x\rangle} - 1 - i\langle z,x\rangle\theta(x)$$
 とおくと,

$$\psi_n(z) = -\frac{1}{2} \langle A_n z, z \rangle + \int_{\mathbf{R}^d} g(z, x) \nu_n(dx) + i \langle \beta_n, z \rangle.$$

ここで $\rho_n(dx) := (1 \wedge |x|^2) \nu_n(dx)$ とおくと,

(3.1)
$$\sup_{n} \rho_n(\mathbf{R}^d) < \infty, \quad \lim_{L \to \infty} \sup_{n} \rho_n(|x| > L) = 0$$

が成り立つことが言える.これは確率測度の族の場合は「緊密」(tight) に相当する条件で,相対コンパクトと同値となるが,有限測度の場合も同様で, $\exists\{n_k\}; \rho_{n_k} \to \exists \rho$: 有限測度.そこで, $\nu(dx):=(1\wedge|x|^2)^{-1}1_{\{x\neq 0\}}\rho(dx)$ とおく. $\varepsilon>0$ に対し,

$$I_{1,n}^{\varepsilon}(z) := \int_{|x| > \varepsilon} g(z,x) (1 \wedge |x|^2)^{-1} \rho_n(dx),$$

$$I_{2,n}^{\varepsilon}(z) := \int_{|x| < \varepsilon} (g(z,x) + \frac{1}{2} \langle z, x \rangle^2) (1 \wedge |x|^2)^{-1} \rho_n(dx)$$

とおけば.

$$\psi_n(z) = -\frac{1}{2} \langle A_{n,\varepsilon} z, z \rangle + I_{1,n}^{\varepsilon}(z) + I_{2,n}^{\varepsilon}(z) + i \langle \beta_n, z \rangle.$$

次で, n は n_k を表すとして $n \to \infty$, (i.e., $k \to \infty$) へ動かし, ρ 連続な $\varepsilon > 0$, i.e, $\rho(|x| = \varepsilon) = 0$ (正確には $\{|x| < \varepsilon\}$ が ρ 連続集合ということであるが,) として, $\varepsilon \downarrow 0$ とすると,

$$(3.2) I_{1,n}^{\varepsilon}(z) \xrightarrow[n \to \infty]{} \int_{|x| > \varepsilon} g(z,x) \nu(dx) \xrightarrow[\varepsilon \downarrow 0]{} \int_{\mathbf{R}^d} g(z,x) \nu(dx).$$

また, $\forall z$, $|g(z,x)+\langle z,x\rangle^2/2|(1\wedge|x|^2)^{-1}\leq |z|^3|x|/3!\to 0$ $(|x|<\varepsilon\to 0)$ なので, $\sup_n\rho_n(\mathbf{R}^d)<\infty$ より,

$$\lim_{\varepsilon \downarrow 0} \sup_n |I^{\varepsilon}_{2,n}(z)| = 0.$$

よって, $\psi_n(z)$ の実部, 虚部を分けて考えれば

$$\lim_{\varepsilon \downarrow 0} \limsup_{k \to \infty} \langle z, A_{n_k, \varepsilon} z \rangle = \lim_{\varepsilon \downarrow 0} \liminf_{k \to \infty} \langle z, A_{n_k, \varepsilon} z \rangle \in \mathbf{R},$$

$$\limsup_{k \to \infty} \langle \beta_{n_k}, z \rangle = \liminf_{k \to \infty} \langle \beta_{n_k}, z \rangle \in \mathbf{R}$$

で、それぞれ、 $^{\exists}A$; $\langle z,Az\rangle$, $^{\exists}\beta$; $\langle \beta,z\rangle$ と表せる. $(\to$ 問) これにより, $\psi(z)$ が (A,ν,β) による第 2 標準形で表せて、一意である. また係数の収束は、部分列 $\{n_k\}$ と ρ 連続な ε に対してだが、まず、 ε の条件は、積分の単調性から外せて、更に、 ψ の表現の一意性から $\{\rho_n\}$ の任意の部分列に対し、収束する部分列をとるとその極限は ρ となり、結局、部分列を取らなくても $\rho_n \to \rho$ となる. 従って、全ての係数の収束が元の n のままで言える.

後は, (3.1) を示せば良い. $C(h) = [-h, h]^d$ として, $A_n = (a_{ik}^{(n)})$ とすると,

$$\begin{split} -\int_{C(h)} \psi_n(z) dz &= \frac{1}{2} \sum_{j \leq d} a_{jj}^{(n)} \int_{C(h)} z_j^2 dz - \int_{\mathbf{R}^d} \nu_n(dx) \int_{C(h)} g(z,x) dz \\ &= \frac{1}{3} 2^{d-1} h^{d+2} \sum_{j \leq d} a_{jj}^{(n)} + (2h)^d \int_{\mathbf{R}^d} \left(1 - \prod_{j=1}^d \frac{\sin h x_j}{h x_j} \right) \nu_n(dx) \geq 0. \end{split}$$

固定した h>0 に対し, $n\to\infty$ とすれば, (左辺) $\to -\int_{C(h)} \psi(z)dz$ に収束するので, 有界. 更に,

$$\inf_{x} \left(1 - \prod_{j=1}^{d} \frac{\sin hx_{j}}{hx_{j}} \right) (1 \wedge |x|^{2})^{-1} > 0$$

なので $(\rightarrow$ 問), $\{\rho_n\}$ の一様有界性; $\sup_n \rho_n(\mathbf{R}^d) < \infty$ が成り立つ. $h \downarrow 0$ のとき, 上の計算と問 3.1 により,

$$\frac{1}{(2h)^d} \int_{C(h)} \psi_n(z) dz \to 0$$

なので $\forall \varepsilon > 0, \exists n_0, h_0; \forall n \geq n_0,$

$$\int_{\mathbf{R}^d} \left(1 - \prod_{j=1}^d \frac{\sin h_0 x_j}{h_0 x_j} \right) \nu_n(dx) < \varepsilon.$$

 $|x| > 2\sqrt{d}/h_0$ なら、 $\exists j_0; |x_{j_0}| > 2/h_0$ より、

$$1 - \prod_{i=1}^{d} \frac{\sin h_0 x_i}{h_0 x_j} \ge 1 - \left| \frac{\sin h_0 x_{j_0}}{h_0 x_{j_0}} \right| \ge 1 - \frac{1}{h_0 |x_{j_0}|} > \frac{1}{2}$$

に注意すると, $h_0 > 0$ は十分小だとして良いので,

$$\rho_n\left(|x|>2\sqrt{d}/h_0\right)=\frac{1}{2}\nu_n\left(|x|>2\sqrt{d}/h_0\right)<\varepsilon\quad(n\geq n_0).$$

以上で (3.1) が示された.

(\Leftarrow) 係数の収束から, $\mu_n \to \mu$ を示す. ρ_n を上と同じで, $\rho(dx) = (1 \wedge |x|^2)\nu(dx)$ と定義する. $\varepsilon > 0$ を ρ 連続として, $\varepsilon \downarrow 0$ として動かせば, ν_n の収束の仮定から, $I_{1,n}^\varepsilon(z)$ の収束;(3.2) が成り立つ.また, ν_n と $A_{n,\varepsilon}$ の収束の仮定から, ρ_n の一様有界性が言えて,これから $\lim_{\varepsilon \downarrow 0} \sup_n |I_{2,n}^\varepsilon(z)| = 0$ も成り立つ.従って, $\psi_n(z)$ の実部,虚部の極限を考えることにより, $\psi_n(z) \to \psi(z)$,i.e., $\widehat{\mu}_n(z) \to \widehat{\mu}(z)$ となり,結論を得る.

問 3.2 A_n が非負定値で、 $\forall z$, $\exists \lim \langle z, A_n z \rangle$ なら、 $\exists A$: 非負定値; $\lim \langle z, A_n z \rangle = \langle z, Az \rangle$ を示せ.

問 3.3 次を示せ.

$$\inf_{x} \left(1 - \prod_{j=1}^{d} \frac{\sin hx_{j}}{hx_{j}} \right) (1 \wedge |x|^{2})^{-1} > 0 \ (\forall h > 0), \quad \frac{1}{(2h)^{d}} \int_{C(h)} \psi_{n}(z) dz \to 0 \ (h \downarrow 0).$$

後半は、ルベーグの収束定理より、前半は、本質的には、原点付近では、 $1-\sin x/x$ が x 2 のオーダーで、原点の近傍を除けば、正の定数で下から抑えられることによる、実際、hx=y と変換して、d=1 のとき、

$$\left(1 - \frac{\sin hx}{hx}\right) (1 \wedge |x|^2)^{-1} = \left(1 - \frac{\sin y}{y}\right) \left(1 \vee \frac{h^2}{|y|^2}\right)$$

t>0 なら $\sin t \le t-t^3/3!+t^5/5!$ より, $|\sin y/y| \le 1-y^2/3!+y^4/5!$ で、まず、|y|<1 なら、

$$1 - \frac{\sin y}{y} \ge \frac{y^2}{3!} - \frac{y^4}{5!}, \ge \left(\frac{1}{3!} - \frac{1}{5!}\right)y^2 =: C_0 y^2, \ \ \sharp \ \ \flat, \quad (与式) \ge C_0 y^2 \cdot \frac{h^2}{y^2} = C_0 h^2.$$

 $|y| \geq 1$ なら、(与式) $\geq (1-\sin 1)\cdot 1$. また、 $d\geq 2$ のときは、|y|<1 なら上の計算と、問 3.1 と同様に積の項を 1 つずつ増やして行けば、 $\sin y_j/y_j\geq \sin 1$ に注意して、(与式) $\geq \sin^{d-1} 1\cdot C_0h^2$. $|y|\geq 1$ なら、 $\exists j; |y_j|\geq 1/\sqrt{d}=:\delta_d$ と他は $|\sin y_k/y_k|\leq 1$ より、

(与式)
$$\geq \left(1 - \frac{|\sin y_j|}{|y_j|}\right) \cdot 1 \geq 1 - \frac{\sin \delta_d}{\delta_d} > 0.$$

ここで, t>0 なら $|\sin t/t|$ は 0+ で 1 をとり, $t\leq\pi/2$ までは単調減少, さらにその先での最大値は $2/\pi$ となる.

(参考) $\sin t/t$ (t>0) について、t=0+ で 1 だが、原点の近傍を除けば、1 より小さい値以下となる実際、 $(\sin t/t)'=(t\cos t-\sin t)/t^2$ で、 $0< t<\pi/2$ なら $(分子)=\cos t(t-\tan t)$ で、 $t<\tan t$ より、狭義単調減少、 $\pi/2< t<\pi$ でも負なので同様、 $\pi< t<3\pi/2$ なら、 $\cos t$ は負で、 $\tan t$ が 0 から無限大まで変化するので、ある $t_0\in(\pi,3\pi/2)$ で、負から正に変化する。従って、そこから先 $t\geq\pi$ では $|\sin t/t|$ の最大値は、 $-\sin t_0/t_0\leq 1/t_0<1/\pi<1/3$ となる.

4 Lévy 過程の重要な例

第2節で、基本的な例は述べたが、更に、重要な例として、安定過程と L 過程(自己分解可能過程)について述べる。

4.1 安定過程と安定分布

Brown 運動の Lévy 過程への拡張として、指数 $0<\alpha\leq 2$ の狭義安定過程というものが、考えられる。これは Brown 運動と同じタイプのスケーリング性をもつが、その時の指数が 2 から α に一般化されたものである、i.e., $X_t\stackrel{(\mathrm{d})}{=} t^{1/\alpha}X_1$. $\alpha=2$ の時が、平均 0 の Gauss 過程となる。更に、スケーリングにずれも許し、拡張したものが単に、安定過程と呼ばれる。また、これらの分布はそれぞれ、狭義安定分布、安定分布と呼ばれる。

定義 4.1 \mathbf{R}^d 上の確率過程 $(X_t)_{t\geq 0}$ が安定過程 (stable process) であるとは, Lévy 過程であって, 次を満たすときをいう.

 $\forall a>0, \exists b>0, c\in\mathbf{R}^d; \ (X_{at})$ と (bX_t+ct) が法則同等, i.e., 有限次元分布が等しい

また, c = 0 として取れるとき, **狭義安定過程** (strictly stable process) という. また, このとき, X_1 の分布をそれぞれ, **安定分布**, **狭義安定分布**という.

 $X_t = \gamma t$ a.s. のとき, これを**自明な Lévy 過程**という. 明らかにこれは狭義安定過程である. また, 自明な Lévy 過程でない安定過程を, **自明でない安定過程** という.

定理 4.1 \mathbf{R}^d 上の自明でない Lévy 過程 $(X_t)_{t\geq 0}$ が安定過程 \iff $^\forall t>0, ^{\exists_1}a_t>0, b_t\in\mathbf{R}^d;$ $X_t\stackrel{\mathrm{(d)}}{=}a_tX_1+b_t, \text{ i.e., }\widehat{\mu}(z)^t=\widehat{\mu}(a_tz)e^{ib_t\cdot z}.$ また、常に $b_t=0$ として取れるとき、狭義安定過程と同値となる.

[証明] $\forall a>0, \exists b>0, c\in \mathbf{R}^d; \ (X_{at})$ と (bX_t+ct) が法則同等なので, t=1, a=t として, $\forall t>0, \exists a_t, b_t; X_t \stackrel{(\mathrm{d})}{=} a_t X_1 + b_t$ は明らか. 一意性は, 定数でない確率変数 X に対し, $aX+b\stackrel{(\mathrm{d})}{=} \widetilde{a}X+\widetilde{b}$ とすると, $a=\widetilde{a}, b=\widetilde{b}$ が言える. 実際, $aX+b\stackrel{(\mathrm{d})}{=} X$ として, a=1, b=0 を示せば十分で $(\widetilde{a}\neq 0$ なら $\widetilde{a}^{-1}(aX+b-\widetilde{b})\stackrel{(\mathrm{d})}{=} X$ より), X_1, X_2 を独立, かつ, $\stackrel{(\mathrm{d})}{=} X$ とすると, $a(X_1-X_2)=(aX_1+b)-(aX_2+b)\stackrel{(\mathrm{d})}{=} X_1-X_2$. よって, $\forall n\geq 1, \ a^n|X_1-X_2|\stackrel{(\mathrm{d})}{=} |X_1-X_2|$. もし, $a\neq 1$ なら, $X_1-X_2\stackrel{(\mathrm{d})}{=} 0$ となり, X が定数となるので矛盾 $(\to$ 問). 故に a=1. 更に, $X\stackrel{(\mathrm{d})}{=} X+nb$ $(\forall n)$ で, b=0 $(\to$ 問).

逆は、 $\forall a>0$ に対し、 $X_a\stackrel{(\mathrm{d})}{=}a_aX_1+b_a$ より、 $b=a_a,c=b_a$ とすれば、 $X_a\stackrel{(\mathrm{d})}{=}bX_1+c$ で、 $(X_{at}),(bZ_t+ct)$ は共に Lévy 過程で、t=1 での分布が等しいので、法則同等となり、安定過程となる、狭義の方は明らかである.

問 4.1 X_1, X_2 が独立で, $X_1 - X_2 \stackrel{\text{(d)}}{=} 0$ なら, $X_1 = X_2 = 定数 a.s.$ を示せ. また, $X \stackrel{\text{(d)}}{=} X + nb$ ($^{\forall}n$) なら, b = 0 を示せ.

(解) $P(X_1 - X_2 = 0) = 1$ より, $X_1 = X_2$ a.s. で, 同分布, それを μ とすると, $X_1 - X_2$ の特性関数は $|\hat{\mu}(z)|^2 = 1$ となり, 次の事実より, 結果を得る.

 $\cdot |\hat{\mu}| = 1$ (より弱く, 原点の近傍だけで) なら, $\exists \gamma \in \mathbf{R}^d; \mu = \delta_{\gamma}$

実際, 成分ごとに見れば良いので d=1 で示せば十分で, 0 の近傍の $z\neq 0$ で, $^{\exists}\gamma_z; \hat{\mu}(z)=e^{i\gamma_z}$. よって, μ の台は $x=(\gamma_z+2n\pi)/z$ にある。もしこれが 2 つ以上あれば, $|x_1-x_2|\geq 2\pi/|z|$ となり,|z| はいくらでも小さく取れるので矛盾.

また, $X \stackrel{(\mathrm{d})}{=} X + nb$ ($^{\forall}n$) のとき,もし, $b \neq 0$ とすると,ある程度小さい集合 $^{\exists}A$; $\delta := P(X \in A) > 0$ をとれば, $1 \geq P(X \in \bigcup_{n \geq 1} (A + nb)) = \sum_{n \geq 1} P(X \in A + nb) = \infty \cdot \delta = \infty$ となり、矛盾. 故にb = 0.

定理 4.2 (安定過程の指数の存在) (X_t) が自明でない安定過程であれば、 $\exists_1 \alpha \in (0,2]; \forall t > 0$ 、 $\exists_1 b_t \in \mathbf{R}^d; X_t \stackrel{(d)}{=} t^{1/\alpha} X_1 + b_t$, i.e., $\widehat{\mu}(z)^t = \widehat{\mu}(t^{1/\alpha} z) e^{iz \cdot b_t}$.

また, (X_t) が 0 でない狭義安定過程であれば, 同様に $\exists_1 \alpha \in (0,2]; \forall t > 0, X_t \stackrel{(\mathrm{d})}{=} t^{1/\alpha} X_1$, i.e., $\widehat{\mu}(z)^t = \widehat{\mu}(t^{1/\alpha}z)$.

定義 4.2 上の定理で定まる指数 $0 < \alpha \le 2$ をそれぞれ, 自明でない安定過程の指数, 0 でない狭義安定過程の指数と呼ぶ.

また δ 分布でない安定分布, δ_0 でない狭義安定分布の指数を, 対応する安定過程の指数で定義する.

0 でない自明な狭義安定過程の指数は 1 であるが, 安定過程としての指数は定義されていないことに注意.

 \mathbf{R}^d 上の Brown 運動は指数 2 の狭義安定過程で, δ 分布でない Gauss 分布から定まる Lévy 過程は、指数 2 の安定過程である.

[定理 4.2 の証明] まず、狭義安定過程 (Y_t) について示す、 $Y_1 \stackrel{\text{(d)}}{=} \eta$ とする、 $\forall t > 0, \exists_1 a_t > 0;$ $Y_t \stackrel{\text{(d)}}{=} a_t Y_1$ より、 $\widehat{\eta}(z)^t = \widehat{\eta}(a_t z)$ 、更に s > 0 に対しても、

$$\widehat{\eta}(a_{st}z) = \widehat{\eta}(z)^{st} = (\widehat{\eta}(z)^t)^s = \widehat{\eta}(a_tz)^s = \widehat{\eta}(a_sa_tz).$$

一意性から, $a_{st}=a_sa_t$ と $a_1=1$ を満たす. 更に t>0 についての連続性が示せるので, $\exists \beta; a_t=t^\beta$ (\rightarrow 問), しかも $\beta>0$ も分かるので $\alpha:=1/\beta$ とおけばよい. a_t の一意性から, α も一意.

実際,連続性については, $t_n \to t$ とすると, $\widehat{\eta}(a_{t_n}z) = \widehat{\eta}(z)^{t_n} \to \widehat{\eta}(z)^t = \widehat{\eta}(a_tz)$. もし $a_{t_n} \to 0$ なら, $\widehat{\eta}(z)^t = \widehat{\eta}(0) = 1$ となり, $Y_1 = 0$ a.s. となってしまい $Y_1 \neq 0$ a.s. に矛盾.もし $a_{t_n} \to \infty$ だと, $\widehat{\eta}(z) = \widehat{\eta}(a_{t_n}^{-1}z)^{t_n} \to \widehat{\eta}(0)^t = 1$ で,やはり矛盾. $a_{t_n} \to a \in (0,\infty)$ とすると,上から, $\widehat{\eta}(az) = \widehat{\eta}(z)^t = \widehat{\eta}(a_tz)$ で一意性から, $a = a_t$. 以上から,連続性と, $0 < a_t < \infty$ が分かる(より正確には, \limsup , \liminf を考え,それに一致する部分列に対し,上のことが全て成り立つので,この 2 つの値が $a_t \in (0,\infty)$ に一致する).更に, $a_t = t^\beta$ で,もし, $\beta < 0$ なら, $t \downarrow 0$ のとき, $a_t \to \infty$ と なるので上で示したように矛盾する.また,もし $\beta = 0$ なら, $a_t = 1$, $\widehat{\eta}(z)^t = \widehat{\eta}(z)$ で, $t \downarrow 0$ なら, $\widehat{\eta}(z) \equiv 1$ となり,矛盾.よって, $\beta > 0$.従って, $\alpha := 1/\beta$ とおける.

安定過程 (X_t) の時は、その対称化 $Y_t = X_t - \widetilde{X}_t$ を考えれば、前の定理より、 $\forall t > 0$, $\exists_1 a_t > 0$, $b_t \in \mathbf{R}^d$; $X_t \stackrel{\mathrm{(d)}}{=} a_t X_1 + b_t$ で、非自明より、 (Y_t) は 0 でない狭義安定過程となるので、上の結果から次のように分る。 $X_1 \stackrel{\mathrm{(d)}}{=} \mu, Y_1 \stackrel{\mathrm{(d)}}{=} \eta$ とすると、 $\widehat{\eta}(z) = |\widehat{\mu}(z)|^2$ で、

$$|\widehat{\mu}(z)|^{2t} = \widehat{\eta}(z)^t = \widehat{\eta}(t^{1/\alpha}z) = |\widehat{\mu}(t^{1/\alpha}z)|^2.$$

これから、 $\exists \widetilde{b_t} \in \mathbf{R}^d$; $\widehat{\mu}(z)^t = e^{iz \cdot \widetilde{b_t}} \widehat{\mu}(t^{1/\alpha}z)$ が言え、前定理の係数の一意性から $\widetilde{b_t} = b_t$.

後は, $\alpha \leq 2$ を示せば良い. μ の生成要素を (A, ν, γ) とする. また, ν_t を $\nu_t(dx) := \nu(t^{-1/\alpha}dx)$ で定義する. X_t と $t^{1/\alpha}X_1 + b_t$ の特性関数の比較より, 次を得る.

$$tA = t^{2/\alpha}A, \quad t\nu = \nu_t$$

(ちなみに, $t^{1/\alpha}\gamma + b_t = t\gamma$, i.e., $b_t = (t - t^{1/\alpha})\gamma$ となる). これから, まず $\alpha \neq 2$ なら A = 0. 更 に, $\alpha > 2$ とすると, $1 - 2/\alpha > 0$ なので, $x = t^{-1/\alpha}x'$ と変換し, $\nu(t^{-1/\alpha}dx) = \nu_t(dx) = t\nu(dx)$ より, $\forall a > 0$.

$$\int_{|x| < a} |x|^2 \nu(dx) = t^{-2/\alpha} \int_{|x| < t^{1/\alpha}a} |x|^2 \nu(t^{-1/\alpha}dx) = t^{1-2/\alpha} \int_{|x| < t^{1/\alpha}a} |x|^2 \nu(dx) \to 0 \ (t \downarrow 0).$$

よって, $\nu=0$ となる. つまり, $X_1=b_1+\gamma$ となり, 自明でないことに反する. 故に, $\alpha\leq 2$ である.

問 $a_t > 0$ が連続 in t > 0 で, $a_{st} = a_s a_t$ と $a_1 = 1$ を満たすなら, ${}^{\exists}\beta$; $a_t = t^{\beta}$ を示せ.

 $\beta := \log a_e$ とおく. 即ち, $e^\beta = a_e$. $\forall t > 0$, $a_{t^n} = a_t^n$ と $a_{t^{1/n}} = a_t^{1/n}$ ($a_{t^{1/n}}^n = a_t$ による). よって, $\forall r \in \mathbf{Q}$, $a_{t^r} = a_t^r$. 連続性から, $\forall x \in \mathbf{R}$, $a_{t^x} = a_t^x$. よって, $e^x = t$ とおけば, $a_t = a_{e^x} = a_e^x = e^{\beta x} = e^{\beta \log t} = t^\beta$. 次の結果の証明には, **タイプ同値** という概念が用いられるが, 本テキストでは, 省略する.

定理 4.3 $\exists (S_n)$: i.i.d. Z_k の確率変数の部分和, 即ち, RW (random walk) で, $\exists a_n > 0, b_n \in \mathbf{R}^d$; $a_n S_n + b_n \to \mu$ in law なら, μ は安定分布. また, 逆も成り立つ. 即ち, μ が安定分布なら, 上の形の極限分布となるが, より正確には, $Z_k \overset{(\mathrm{d})}{=} \mu$ とすると, $\exists a_n > 0, b_n \in \mathbf{R}^d$; $a_n S_n + b_n \overset{(\mathrm{d})}{=} \mu$ とできる.

次に、安定分布の特性関数の標準形について考える.

定理 4.4 (安定分布の標準形) $\mu \in I(\mathbf{R}^d), \neq \delta$ として、生成要素を (A, ν, γ) とする.

- (1) μ が 2 安定分布 $\iff \nu = 0$.
- (2) $0 < \alpha < 2$ とする. μ が α 安定分布 \iff A = 0, $\exists_1 \lambda(d\xi) \neq 0$: 有限測度 on $S = S^{d-1}$;

$$\nu(dx) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} 1_{dx}(r\xi) r^{-1-\alpha} dr.$$

即ち、次の**第1標準形**をもつ. $\widehat{\mu}(z) = e^{t\psi(z)}$;

$$\psi(z) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} \left(e^{i\langle z, r\xi \rangle} - 1 - i\langle z, r\xi \rangle 1_{(0,1)}(r) \right) r^{-1-\alpha} dr + i\langle \gamma, z \rangle.$$

更に, 次の**第 2 標準形**ももつ. $z = |z|\zeta \in \mathbf{R}^d$ に対し,

 $\alpha \neq 1$ なら,

$$\psi(z) = -|z|^{\alpha} \int_{S} \left(1 - \tan \frac{\pi \alpha}{2} \operatorname{sgn} \langle \zeta, \xi \rangle \right) |\langle \zeta, \xi \rangle|^{\alpha} \lambda(d\xi) + i \langle \gamma_0, z \rangle.$$

 $\alpha = 1 \ \text{$\zeta$},$

$$\psi(z) = -|z| \int_{S} \left(|\langle \zeta, \xi \rangle| + \frac{2}{\pi} \langle \zeta, \xi \rangle \log |\langle z, \xi \rangle| \right) \lambda(d\xi) + i \langle \gamma_0, z \rangle.$$

これらの表現での $\lambda, \gamma, \gamma_0$ は一意である.

これから、次はすぐに分る.

定理 4.5 (狭義安定分布の標準形) $\mu \in I(\mathbf{R}^d), \neq \delta_0$ として, $0 < \alpha \le 2$ とする. μ が α 狭義安定分布 \Longleftrightarrow

- (1) $\alpha = 2$ のとき, μ は δ_0 でない平均 0 の Gauss 分布.
- (2) $0 < \alpha < 2$ のとき, 次の**第 1** 標準形をもつ. $\exists_1 \lambda(d\xi)$: 有限測度 on $S = S^{d-1}$; $\lambda \neq 0$ if $\alpha \neq 1$ で, 次を満たす.
 - (i) $0 < \alpha < 1 \text{ Obs}$,

$$\widehat{\mu}(z) = \exp\left[\int_{S} \lambda(d\xi) \int_{0}^{\infty} \left(e^{i\langle z, r\xi \rangle} - 1 - i\langle z, r\xi \rangle 1_{(0,1)}(r) \right) r^{-1-\alpha} dr \right].$$

(ii) $1 < \alpha < 2$ のとき,

$$\widehat{\mu}(z) = \exp\left[\int_{S} \lambda(d\xi) \int_{0}^{\infty} \left(e^{i\langle z, r\xi \rangle} - 1 - i\langle z, r\xi \rangle \right) r^{-1-\alpha} dr \right].$$

(iii) $\alpha = 1$ のとき, $\exists_1 \gamma \in \mathbf{R}^d$;

$$\widehat{\mu}(z) = \exp\left[\int_{S} \lambda(d\xi) \int_{0}^{\infty} \left(e^{i\langle z, r\xi \rangle} - 1 - i\langle z, r\xi \rangle 1_{(0,1)}(r) \right) r^{-2} dr + i\langle \gamma, z \rangle \right],$$

かつ、 $(\lambda = 0 も可)$

$$\int_S \xi \lambda(d\xi) = 0, \quad \lambda(S) + |\gamma| > 0.$$

更に、第2標準形ももつがそれは、安定分布の第2標準形と同じで、次の条件も満たす.

- $\alpha \neq 1$ のとき, $\gamma_0 = 0$ $(\lambda \neq 0)$.
- $\alpha=1$ のとき、 λ は 0 も可だが、 $\int_S \xi \lambda(d\xi) = 0$ 、 $|\gamma_0| + \lambda(S) > 0$ を満たす.

[安定過程の標準形 定理 4.4 の証明] μ を α 安定分布, X_t を対応する安定過程とする. 指数の存在で示したように, $tA=t^{2/\alpha}A$, $t\nu=\nu_t$ $(\nu_t(dx)=\nu(t^{-1/\alpha}dx))$ で, $\alpha=2$ なら $\nu=0$, $\alpha<2$ なら A=0 であった.

$$\lambda(d\xi) := \alpha \nu((1, \infty)d\xi)$$

on $S = \mathbf{S}^{d-1}$ とおけば、有限測度で、更に、定理の (2) の ν の λ による表示の式(右辺)を、上の λ によるものとして ν' とおけば、即ち、

$$\nu'(dx) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} 1_{dx}(r\xi) r^{-1-\alpha} dr$$

とおけば、 $\nu'=\nu$ が言える. 実際、 ${}^\forall a>0, C\in \mathcal{B}(S)$ に対し、 $a^{-\alpha}\nu(dx)=\nu_{a^{-\alpha}}(dx)=\nu(adx)$ より、

$$\nu'((a,\infty)C) = \lambda(C) \int_{a}^{\infty} r^{-1-\alpha} dr = \frac{1}{\alpha} a^{-\alpha} \lambda(C) = a^{-\alpha} \nu((1,\infty)C) = \nu((a,\infty)C).$$

 λ は ν から決まるので、一意で、よって、 γ , γ 0 もそうなる. また、逆も明らかである.

第2標準形については、次の積分結果を用いれば、可能である.

$$\int_0^\infty (e^{ir} - 1)r^{-1-\alpha}dr = \Gamma(-\alpha)e^{-i\pi\alpha/2} \quad (0 < \alpha < 1).$$

$$\int_0^\infty (e^{ir} - 1 - ir)r^{-1-\alpha}dr = \Gamma(-\alpha)e^{-i\pi\alpha/2} \quad (1 < \alpha < 2).$$

$$\int_0^\infty (e^{izr} - 1 - izr1_{(0,1)}(r))r^{-2}dr = -\frac{\pi}{2}z - iz\log z + icz \ (z > 0),$$

ここで,

$$c = \int_{1}^{\infty} \sin r \, \frac{dr}{r^2} + \int_{0}^{1} (\sin r - r) \frac{dr}{r^2}.$$

上の証明の最後の等式計算は, $0 < \alpha < 1$ のとき,

$$\int_0^\infty (e^{-ur} - 1)r^{-1-\alpha}dr = \int_0^\infty dr r^{-1-\alpha} \int_0^u (-re^{-tr})dt = -\int_0^u dt \ t^{\alpha-1} \int_0^\infty s^{(1-\alpha)-1}e^{-s}ds$$

= $-\alpha^{-1}\Gamma(1-\alpha)u^{\alpha} = \Gamma(-\alpha)u^{\alpha}$ より、 $w \in \mathbb{C}; \neq 0$ 、 $\operatorname{Re} w \leq 0$ に対し、

$$\int_0^\infty (e^{wr} - 1)r^{-1-\alpha}dr = \Gamma(-\alpha)(-w)^{\alpha}.$$

分枝は, $(-w)^{\alpha}=|w|^{\alpha}e^{i\alpha\arg(-w)}$; $\arg(-w)\in(-\pi,\pi)$. 実際,両辺は, $\mathrm{Re}\,w<0$ で正則, $\mathrm{Re}\,w\leq0$, $w\neq0$ で連続,負で一致なので一致の定理より.これにより,最初の等式を得る.第2の等式は,部分積分で、最初の等式に帰着.最後は, $\int_0^{\infty}r^{-2}(1-\cos r)dr=\pi/2$ により,直接計算できる.

定理 4.6 (X_t) が回転不変な α 安定過程 $(0 < \alpha \le 2) \iff {}^{\exists}c > 0; E[e^{i\langle z, X_t \rangle}] = e^{-tc|z|^{\lambda}}$. また, $\alpha < 2$ のとき, λ は S 上の一様測度となる.

4.2 L-過程 (自己分解可能過程) と L-分布

安定過程を更に拡張したものとして、自己分解可能過程、または、単に、L-過程と呼ばれるものがある.

定義 4.3 (X_t) が自己分解可能過程 (self-decomposable process), または, L-過程 \iff (X_t) は d 次元 Lévy 過程で, $\forall c \in (0,1)$, $\exists (Y_t), (Z_t)$: d 次元 Lévy 過程 on $\exists (\Omega', \mathcal{F}', P')$: 確率空間; $(Y_t) \perp (Z_t)$, $(Y_t) = (cX_t)$ in law, $(Y_t + Z_t) = (X_t)$ in law.

また、このとき、 X_1 の分布を、**自己分解可能分布** or L-分布という。このとき、上の定義の条件が t=1 で成り立つことと同値となる、即ち、 $\forall c \in (0,1)$ 、 $\exists Y, Z: d$ 次元 RVs on $\exists (\Omega', \mathcal{F}', P')$:確率空間;これらの分布は無限分解可能分布で、 $Y \perp \!\!\!\perp Z, Y \stackrel{\text{(d)}}{=} cX, Y + Z = X$, i.e., $\exists \rho_c, \eta_c \in I(\mathbf{R}^d)$; $\rho_c \perp \!\!\!\!\perp \eta$, $\widehat{\rho_c}(z) = \widehat{\mu}(cz)$, $\mu = \rho_c * \eta_c$.

注) μ が *L*-分布なら, $\forall t > 0, \mu^{t*}$ もそう.

補題 **4.1** (X_t) が L-過程, i.e., $X_1 \stackrel{(\mathrm{d})}{=} \mu$ が L-分布 $\iff {}^\forall c \in (0,1), {}^\exists \eta_c \in I(\mathbf{R}^d); \widehat{\mu}(z)/\widehat{\mu}(cz) = \widehat{\eta}_c(z). \iff \mu \leftrightarrow (A,\nu,\gamma)$ として, r>0 に対し, $N(r,d\xi) := \nu((r,\infty)d\xi)$ とすると, ${}^\forall B \in \mathcal{B}(S), n_B(s) := N(e^{-s},B)$ が $s \in \mathbf{R}$ の凸関数(下に凸)となる.

[証明] 最初の同値は、 $Z_1 \stackrel{(\mathrm{d})}{=} \eta_c$ 、逆は、 $\eta_c \in I(\mathbf{R}^d)$ から決まる Lévy 過程を (Z_t) としてやれば明らか. (Y_t) は $\mu(cz) \in I(\mathbf{R}^d)$ から決まる. 次の同値は、まず、 μ を L-分布とする. $\psi(z) = \log \hat{\mu}(z)$ とおくと、 $X_1 \stackrel{(\mathrm{d})}{=} Y_1 + Z_1$ 、 $Y \stackrel{(\mathrm{d})}{=} cX_1$ 、 $Y_1 \perp\!\!\!\perp Z_1$ により、 Z_1 の分布の対数特性関数が $\psi_c(z) = \psi(z) - \psi(cz)$ となるので、結局、 μ : L-分布 \iff $\hat{\eta_c} = e_c^{\psi}$ がが Lévy の標準形で表されれば良い。 $A_c = (1-c^2)A, \nu_c(dx) : \nu(dx) - \nu(c^{-1}dx)$ とおくと、ある $\gamma_c \in \mathbf{R}^d$ が存在し、 $\psi_c \leftrightarrow (A_c, \nu_c, \gamma_c)$ となるが、これが、無限分解可能分布の対数特性関数となるためには、 $\nu_c \geq 0$ 、i.e.、 $\nu(E) - \nu(c^{-1}E) \geq 0$ ($^{\forall}E \in \mathcal{B}(\mathbf{R}^d \setminus \{0\})$) が必要十分となる。しかも、これは与えられた条件と同値であることが、任意に固定した $B \in \mathcal{B}(S)$ に対し、 $n(s) = n_B(s)$ として、 $^{\forall}u > 0$ に対し、 $n(s+u) - n(s) \geq n(s+u+\log c) - n(s+\log c)$ を満たすことと同値であることからすぐ分かる(\rightarrow 問、 $c \in (0,1)$ より、 $\log c < 0$ に注意).

問 上の証明で述べた次の同値を説明せよ. $\nu(E) - \nu(c^{-1}E) \geq 0$ (${}^{\forall}E \in \mathcal{B}(\mathbf{R}^d \setminus \{0\}) \iff$ 任意に固定した $B \in \mathcal{B}(S)$ に対し, $n(s) = n_B(s)$ として, ${}^{\forall}u > 0$ に対し, $n(s+u) - n(s) \geq n(s+u+\log c) - n(s+\log c)$. \iff ${}^{\forall}B \in \mathcal{B}(S)$, $n_B(s) := N(e^{-s},B)$ が $s \in \mathbf{R}$ の凸関数

定理 4.7 (自己分解可能過程の標準形) (X_t) が L-過程 \iff X_1 の Lévy 測度 ν に対し、 $\exists \lambda(d\xi)$: 有限測度 on S, $\exists k_{\xi}(r) \geq 0$: 可測 in $\xi \in S$, 非増加右連続 in r > 0, $k_{\xi}(0+) > 0$;

$$\nu(dx) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} 1_{dx}(r\xi) \frac{k_{\xi}(r)}{r} dr.$$

[証明] (X_t) を L-過程とする. 上の補題から, $\forall B \in \mathcal{B}(S)$, $N(e^{-s},B)$ が $s \in \mathbf{R}$ の凸関数となる. そこで, $N(r,B) = \nu((r,\infty)B)$ が r > 0 については, 非増加なので,

$$\lambda(B) := -\int_0^\infty (1 \wedge r^2) dN(r, B) = \int_{(0, \infty)B} (1 \wedge |x|^2) \nu(dx)$$

とおくと、 λ は S 上の有限測度で、各 r>0 に対し、 $\lambda(d\xi)\ll N(r,d\xi)$ である。従って、 $s\in\mathbf{R}$ に対し、 $^3H_\xi(s)$: ξ の非負可測関数; $N(e^{-s},d\xi)=H_\xi(s)\lambda(d\xi)$. 左辺が、s に関し、非減少かつ凸だったので、任意の $s_1< s_2, p\in(0,1)$ が与えられたとき、 λ -a.a. ξ に対し、

$$H_{\xi}(s_1) \le H_{\xi}(s_2), \quad H_{\xi}(ps_1 + (1-p)s_2) \le pH_{\xi}(s_1) + (1-p)H_{\xi}(s_2).$$

これから、 λ -a.a. ξ に対し、 $H_{\xi}(s)$ が s に関し、非減少かつ凸として良い。正確にはそのようなバージョン(変形)が作れる。実際、 $^{\exists}C_1 \in \mathcal{B}(S); \lambda(C_1^c) = 0$ 、かつ、 $^{\forall}\xi \in C_1$ 、 $s_1 < s_2, p \in (0,1)$ なる全ての有理数に対し、 $H_{\xi}(s)$ が上の不等式を満たすとして良いので、

$$\widetilde{H_{\xi}}(s) := \sup_{r \in (-\infty, s) \cap \mathbf{Q}} H_{\xi}(r)$$

とおけば、これが条件を満たし、しかも ξ について可測で、 $N(e^{-s},d\xi)=\widetilde{H_{\xi}}(s)\lambda(d\xi)$ も満たす。よって、 $^{\exists}C_2\subset C_1;C_2\in\mathcal{B}(S)$ 、かつ、 $^{\forall}\xi\in C_2$ 、 $\widetilde{H_{\xi}}(-\infty)=0$ とできる.

$$h_{\xi}(u) := \lim_{n \to \infty} n(\widetilde{H_{\xi}}(u) - \widetilde{H_{\xi}}(u - 1/n))$$

とおけば、左連続で、 ε について可測、かつ、

$$\widetilde{H_{\xi}}(s) = \int_{-\infty}^{s} h_{\xi}(u) du.$$

更に $C = \{\xi; h_{\xi} \equiv 0\}, C_3 = C_2 \setminus C$ とおけば, $\xi \in C_3$ に対しては, $h_{\xi}(\infty) > 0$ で,

$$\nu((0,\infty)C) = \lim_{s \to \infty} N(e^{-s}, C) = \lim_{s \to \infty} \int_C \widetilde{H_{\xi}}(s)\lambda(d\xi) = 0$$

これから,

$$\nu((r,\infty)B) = N(r,B) = \int_{B \cap C_3} \widetilde{H_{\xi}}(\log r)\lambda(d\xi)$$

$$= \int_{B \cap C_2} \lambda(d\xi) \int_{-\infty}^{\log r} h_{\xi}(u)du = \int_{B} \lambda(d\xi) \int_{r}^{\infty} h_{\xi}(-\log r) \frac{dv}{v}.$$

よって、 $k_{\xi}(v):=h_{\xi}(-\log v)$ if $\xi\in C_3$ と定義すれば、可測 in (ξ,v) 、かつ、非増加右連続で、 $k_{\xi}(0+)=h_{\xi}(\infty)>0$. C_3 の外では、 $k_{\xi}(v)\equiv 1$ と定義すれば、これが題意を満たす. 逆は明らか.

5 Lévy 過程と分布

本節では、まず、法則の意味の Lévy 過程と普通の Lévy 過程が同等であることを示し、更に、分布の性質として、絶対連続となるための十分条件を与える.

5.1 法則の意味の Lévy 過程

次の結果は、確率連続な一般の Markov 過程に対し、成り立つのだが、それを Lévy 過程に、アレンジしたものである。(Markov 過程の場合については、最後の第6節で述べる。)

定理 5.1 (X_t) を Lévy 過程として, $X_1 \stackrel{\text{(d)}}{=} \mu$ とする. $\varepsilon > 0$ に対し,

$$\alpha_{\varepsilon}(t) := P(|X_t| \ge \varepsilon) = P(|X_{t+s} - X_s| \ge \varepsilon) \ (\forall s \ge 0)$$

とおく.

- (1) (X_t) の確率連続性より, $\forall \varepsilon > 0$, $\lim_{t \downarrow 0} \alpha_{\varepsilon}(t) = 0$ を満たすが, これにより, (X_t) は D バージョンをもつ, i.e., $\exists (Y_t)$ は D 過程で, (X_t) と同等. 更に, $\forall t > 0$, $P(Y_{t-} = Y_t) = 1$ も満たす (これは (X_t) の確率連続性, 故に (Y_t) の確率連続性からすぐ言える).
- (2) (X_t) が Gauss 過程なら, $\forall \varepsilon > 0$, $\lim_{t\downarrow 0} t^{-1}\alpha_{\varepsilon}(t) = 0$ を満たす. 更に, この条件より, (X_t) は C バージョンをもつ.

[証明] (1) $\widetilde{\alpha_{\varepsilon}}(t) := \sup_{s \in [0,t]} \alpha_{\varepsilon}(s)$ として, $I \subset [a,b] \subset [0,\infty)$ とする.

$$B(p,\varepsilon,I) = \{X_t \text{ が } I \text{ において}, (少なくとも) p 個の \varepsilon 振動をもつ \}$$

即ち, I の中に, p+1 個の増加時点 t_j $(j=1,\ldots,p+1)$ が取れて, 順に $|X_{t_{j+1}}-X_{t_j}|\geq \varepsilon$ を満たす事象とする.

(証明の概要) 証明の本質は、① もし、どこかの時点で、右極限か左極限を持たなければ、ある $\varepsilon_0 > 0$ があり、その時点の近傍で、無限個の ε_0 振動を持つということと② 独増分性から得られる不等式である.

(1) $A_{N,k}$ を X_t が $t \in [0, N] \cap \mathbf{Q}$ において, 有限個の 1/k 振動しか持たない事象とすると,

$$\bigcap_{N,k\geq 1} A_{N,k} \subset \{ \forall t \geq 0, \exists X_{t+} \in \mathbf{R}^d, \forall t > 0, \exists X_{t-} \in \mathbf{R}^d \} =: \Omega_1$$

が成り立つ.

② 次に, $n > p \ge 1$, 固定した時点 $a \le t_1 < \cdots < t_n \le b$ において, $I = \{t_1, \ldots, t_n\}$ として, 独立増分性より, 次が成り立つ.

$$P(B(p, 4\varepsilon, I)) \le (2\widetilde{\alpha_{\varepsilon}}(b-a))^p$$
.

これと $\alpha_{\varepsilon}(t) \to 0 \ (t \downarrow 0)$ の仮定より,

③ $\forall N,k \geq 1, P(A_{N,k}^c)=0$ も言えるので, $P(\Omega_1)=1$ となり, (X_t) の確率連続性を用いて, $Y_t:=X_{t+}$ が D 変形であることが示せる.

(証明の詳細)

① 補集合について考える. もし、 $\exists t \geq 0; X_{t+} \in \mathbf{R}^d$ が存在しないとすると、 $\exists t_n \downarrow t; \lim X_{t_n}$ が存在しない、即ち、

$$\exists k_0; \forall j, \exists n_j, m_j \ge j; |X_{t_{n_j}} - X_{t_{m_j}}| \ge 1/k_0.$$

更に、部分列 $\{t_{n_i}\}$ を次を満たすように取れる.

$$|X_{t_{n_{i+1}}} - X_{t_{n_i}}| \ge 1/k_0.$$

明らかにこれは $\{t_{n_j}\}$ において, 無限個の $1/k_0$ 振動をもつことになる.

②は p についての帰納法で示せる. $I=\{t_1,\ldots,t_n\}\subset [a,b],\, 1\leq p< n$ であった. p=1 のとき, C_k を $|X_{t_j}-X_a|$ が, j=k で初めて, 2ε 以上となる事象として, $D_k=\{|X_b-X_{t_k}|\geq \varepsilon\}$ とすれば, C_k は互いに素で,

$$B(1, 4\varepsilon, I) \subset \bigcup_{k=1}^{n} \{|X_{t_k} - X_a| \ge 2\varepsilon\} = \bigcup_{k=1}^{n} C_k \subset \{|X_b - X_a| \ge \varepsilon\} \cup \bigcup_{k=1}^{n} (C_k \cap D_k)$$

となる(最初の包含関係は補集合を考えれば明らかで、最後の包含関係も、

$$C_k \cap D_k^c \subset \{|X_{t_k} - X_a| \ge 2\varepsilon, |X_b - X_{t_k}| < \varepsilon\} \subset \{|X_b - X_a| \ge |X_{t_k} - X_a| - |X_b - X_{t_k}| > \varepsilon\}$$
による). 後は、独立増分性より、

$$P(B(p, 4\varepsilon, I)) \leq P(|X_b - X_a| \geq \varepsilon) + \sum_{k=1}^n P(C_k)P(D_k)$$

$$\leq P(|X_{b-a} - X_0| \geq \varepsilon)) + \sum_{k=1}^n P(C_k)P(|X_{b-t_k} - X_0| \geq \varepsilon)$$

$$\leq \alpha_{\varepsilon}(b-a) + P(\bigcup_{k=1}^n C_k)\widetilde{\alpha_{\varepsilon}}(b-a) \leq 2\widetilde{\alpha_{\varepsilon}}(b-a)$$

次に $p (\geq 1)$ で求める不等式が成り立つとして,

- ・ E_k を, $\{t_1,\ldots,t_k\}$ で, p 個の 4ε 振動を持ち, $\{t_1,\ldots,t_{k-1}\}$ では, p 個の 4ε 振動を持たない事象として.
 - ・ F_k を $\{t_k, \ldots, t_n\}$ で、少なくとも 1 個の 4ε 振動を持つ事象とする.

$$B(p, 4\varepsilon, I) = \bigcup_{k=1}^{n} E_k, \quad B(p+1, 4\varepsilon, I) \subset \bigcup_{k=1}^{n} (E_k \cap F_k).$$

後は, $P(F_k) \leq 2\widetilde{\alpha_{\varepsilon}}(b-a)$ と帰納法の仮定, 独立増分性を用いて, 次を得る.

$$P(B(p+1, 4\varepsilon, I)) \leq \sum_{k=1}^{n} P(E_k)P(F_k) \leq 2\widetilde{\alpha_{\varepsilon}}(b-a)\sum_{k=1}^{n} P(E_k)$$
$$= 2\widetilde{\alpha_{\varepsilon}}(b-a)P(B(p, 4\varepsilon, I)) \leq (2\widetilde{\alpha_{\varepsilon}}(b-a))^{p+1}.$$

従って、求める不等式を得る.

③ $\forall N,k\geq 1$ を固定する. $\varepsilon=1/(4k)$ として、仮定より、 $\exists \ell\geq 1;\widetilde{\alpha_{\varepsilon}}(N/\ell)<1/2$. $t_{\ell,j}:=jN/\ell$ とする.

となる. 実際, $[t_{\ell,j-1}, t_{\ell,j}] \cap \mathbf{Q} = \{t_1, t_2, \dots\}$ と表して, $\forall n \geq 1$,

$$P(B(p, 1/k, \{t_1, \dots, t_n\}) \leq (2\widetilde{\alpha_{\varepsilon}}(N/\ell))^p$$

なので, $n\to\infty$, $p\to\infty$ とすれば, 上を得る. 従って, $P(\Omega_1)=1$ で, $Y_t:=X_{t+1}\Omega_1$ とおけば, 右連続で左極限を持つ. さらに, $\forall t\geq 0$ に対し, $r_n\in \mathbf{Q}_+, \downarrow t$ をとると, $X_{r_n}\to Y_t$ a.s. で, 確率連続性より $X_{r_n}\to X_t$ in pr. なので, 結局, $P(X_t=Y_t)=1$ となる.

(2) まず $t\alpha_{\varepsilon}(t) \to 0$ $(t\downarrow 0)$ を認めて C 変形を持つことを示す. (1) から D 変形 (Y_t) が存在するので, $\forall N\geq 1, P(\forall t\in (0,N], Y_t=Y_{t-})=1$ を示せば良い.

 $^{orall}\ell\geq 1$ を固定し、 $j=0,1,\ldots,\ell$ に対し、 $t_{\ell,j}:=jN/\ell$ とおく、 $^{orall}arepsilon>0$ も固定し、 $M_{arepsilon,\ell}$ を $|Y_{t_{\ell,j}}-Y_{t_{\ell,j-1}}|\geq arepsilon$ なる $j=1,\ldots,\ell$ の個数として、 $M_{arepsilon}$ を $|Y_t-Y_{t-}|\geq arepsilon$ なる $t\in (0,N]$ の個数とすると、 $M_{arepsilon,\ell}$ は $\mathcal F$ 可測で、次が成り立つ (\to 問).

$$M_{2\varepsilon} \leq \liminf_{\ell \to \infty} M_{\varepsilon,\ell}.$$

また,

$$M_{\varepsilon,\ell} = \sum_{j=1}^{\ell} I(|Y_{t_{\ell,j}} - Y_{t_{\ell,j-1}}| \ge \varepsilon)$$

より, $\alpha_{\varepsilon}(t)$ の条件を用いると次を得る.

$$EM_{\varepsilon,\ell} = \sum_{j=1}^{\ell} P(|Y_{t_{\ell,j}} - Y_{t_{\ell,j-1}}| \ge \varepsilon) \le \ell\alpha_{\varepsilon}(N/\ell) \to 0 \ (\ell \to \infty).$$

よって, Fatou の補題により

$$EM_{2\varepsilon} \leq E[\liminf_{\ell \to \infty} M_{\varepsilon,\ell}] \leq \liminf_{\ell \to \infty} EM_{\varepsilon,\ell} = 0.$$

故に, $P(\bigcap_{\varepsilon>0}\{M_\varepsilon=0\})=1$ となり, 題意を得る. (正確には, $\Omega_N:=\bigcap_{k\geq 1}\{\liminf_{\ell\to\infty}M_{1/k,\ell}=0\}$ とおくと, 上の事象に含まれ, $\Omega_N\in\mathcal{F}$ で, $P(\Omega_N)=1$. よって, \mathcal{F} を完備化しておけば良い.) 後は, Gauss 分布が, $\alpha_\varepsilon(t)$ の条件を満たすことを示せば良い. 一般には,

$$\widehat{\mu}(z) = \exp\left[-\frac{1}{2}\langle Az,z\rangle + i\langle \gamma,z\rangle\right]$$

であるが、変換により、 $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_p, 0, \ldots, 0)$ $(\lambda_j > 0)$ 、 $\gamma = 0$ として示せば良い. 更に $\forall \varepsilon > 0$ に対し、次を示せば良い.

$$\lim_{t \downarrow 0} \frac{1}{t} \mu^{t*}(C_{\varepsilon}^{c}) = 0 \quad (C_{\varepsilon} = (-\varepsilon, \varepsilon)^{d}).$$

 $X_t^j = 0 \text{ if } j > p \text{ } \text{\mathfrak{L} } \text{\mathfrak{d}},$

$$\mu^{t*}(C_{\varepsilon}^{c}) = P(X_{t} \notin C_{\varepsilon}) = \sum_{j=1}^{p} P(|X_{t}^{j}| \ge \varepsilon) = 2\sum_{j=1}^{p} \frac{1}{\sqrt{2\pi\lambda_{j}t}} \int_{\varepsilon}^{\infty} e^{-x^{2}/(2\lambda_{j}t)} dx$$

$$= 2\sum_{j=1}^{p} \frac{1}{\sqrt{2\pi}} \int_{\varepsilon/\sqrt{\lambda_{j}t}}^{\infty} e^{-x^{2}/2} dx$$

$$\leq \frac{2\sqrt{t}}{\varepsilon} \sum_{j=1}^{p} \sqrt{\frac{\lambda_{j}}{2\pi}} e^{-\varepsilon^{2}/(2\lambda_{j}t)} = o(t) \quad (t \downarrow 0).$$

但し、最後の評価は、次による.

$$\int_{c}^{\infty} e^{-x^{2}/2} dx \le \int_{c}^{\infty} \frac{x}{c} e^{-x^{2}/2} = \frac{1}{c} e^{-c^{2}/2} \quad \text{by } x/c \ge 1$$

または,

$$\int_{c}^{\infty} e^{-x^{2}/2} dx \le \int_{c}^{\infty} e^{-x^{2}/2} \left(1 + \frac{1}{x^{2}} \right) dx = \frac{1}{c} e^{-c^{2}/2}.$$

問 上の証明の中の $M_{2\varepsilon} \leq \liminf_{\ell \to \infty} M_{\varepsilon,\ell}$ を示せ.

t>0 で、 Y_t が 2ε 以上のジャンプを持てば、右連続性を用いて、 $^{\exists}\ell_0; ^{\forall}\ell \geq \ell_0, ^{\exists}t_{\ell,j-1} \leq t < t_{\ell,j}; Y_{t_{\ell,j-1}}$ は Y_{t-} に近く、 $Y_{t_{\ell,j}}$ は Y_t に近くとれるので、 $|Y_{t_{\ell,j}}-Y_{t_{\ell,j-1}}| \geq \varepsilon$ を満たすようにできる.

5.2 Lévy 過程の分布の絶対連続性

一般に、 \mathbf{R}^d 上の σ 有限測度 μ は Lebesgue 測度 dx に対し、次の **Lebesgue 分解**をもつ:

$$\mu = \mu_c + \mu_d, \quad \mu_c = \mu_{ac} + \mu_{sc}.$$

順に「連続部分+離散部分」、「連続=絶対連続+特異連続」と呼ばれ、次を満たす:

 $\forall x, \mu_c(\{x\}) = 0, \ \mu_d = \sum a_n \delta_{x_n}; a_n > 0, x_n \in \mathbf{R}^d.$ また, $\mu_{ac} \ll dx$, i.e., $|A| = 0 \Rightarrow \mu_{ac}(A) = 0$ 会 $\exists_1 f \geq 0; \mu_{ac}(dx) = f(x)dx$, この f は a.e. で一意.

本節では、Lévy 過程 X_t の分布 μ_t が絶対連続となるための十分条件について、考える.

定理 5.2 生成要素 (A, μ, γ) をもつ Lévy 過程 (X_t) に対し, rank A = d なら, $\forall t > 0$ に対し, μ_t は絶対連続.

非退化の Gauss 分布 $(rank\ A=d)$ は明らかに絶対連続で、それと任意の分布の畳み込みは、常に絶対連続となるので明らか。

 $r={
m rank}\ A< d$ のとき、直交変換により、初めの r 次元は、Gauss 分布の密度関数を持つので、残りの d-r 次元の空間において、 ν による密度関数を持てば、その積が全体での密度関数となるので、絶対連続となる。従って、以下、A=0 として、絶対連続となるための ν の条件を調べれば良い。

次から分るように、Lévy 測度 ν が絶対連続なら、 μ もそうなるが、多次元の場合、そうでなくても言える場合がある。回転不変な安定分布は前半の例で、1次元対称安定分布の直積分布は後半の例となる。

有限測度を $\tilde{\nu}(dx) = (1 \wedge |x|^2)\nu(dx)$ とおく.

定理 5.3 (絶対連続のための第 1 十分条件) $\nu(\mathbf{R}^d)=\infty$ かつ, $\exists \ell\geq 1; \widetilde{\nu}^{\ell*}$ が絶対連続なら, $\forall t>0, X_t$ の分布は絶対連続.

[**証明**] X_1 の分布 μ は, $\nu_n = \nu|_{\{|x| \geq 1/n\}}$ による複合 Poisson 分布

$$\mu_n = \sum_{k \ge 0} e^{-c_n} \frac{c_n^k}{k!} \nu_n^{k*} = \left(\sum_{k=0}^{\ell-1} + \sum_{k \ge \ell}\right) e^{-c_n} \frac{1}{k!} \nu_n^{k*}$$

(但し, $c_n = \nu_n(\mathbf{R}^d)$.) で近似できて、それを畳み込み要素としてもつ. ($\mu = \mu_n * \mu_n^c$ と表せる.) しかも、上の第 2 項は、絶対連続で、 $c_n \to \infty$ より、

$$(\mu_{sc} + \mu_d)(\mathbf{R}^d) \le (\mu_{n,sc} + \mu_{n,d})(\mathbf{R}^d) \le \sum_{k=0}^{\ell-1} e^{-c_n} \frac{c_n^k}{k!} \to 0$$

を得る. 最後c, X_t (t > 0) の時は, c_n を tc_n に変えれば良いだけなので, 題意を得る.

確率変数 X が退化している $\stackrel{\text{def}}{\Longleftrightarrow}$ $\exists a \in \mathbf{R}^d, \exists V \subset \mathbf{R}^d$: 部分空間; $\dim V < d, P(X \in a+V) = 1$, i.e., supp $\mu_X \subset a+V$.

Lévy 過程 (X_t) が退化しているは、同様に、 $\forall t > 0, P(X_t \in at + V) = 1$.

また, 退化していないとき, **非退化 (non-degenerate)** であるという. 更に一般に, 次は同値である. (1) $\forall t > 0, P(X_t \in V) = 1, (2)$ $\exists t > 0; P(X_t \in V) = 1, (3)$ $A(\mathbf{R}^d), \operatorname{supp} \nu \subset V, \gamma \in V$

定理 5.4 (絶対連続のための第 2 十分条件) (X_t) が非退化 Lévy 過程で、その Lévy 測度 ν が、動径方向に絶対連続で、発散条件、即ち、 $\exists \lambda(\xi)$: 有限測度 on $S=\mathbf{S}^{d-1}$ 、 $\exists g(r,\xi)$: 可測関数 on $(0,\infty)\times S$; (但し、 $g(0,\xi)=0$ として、 $r\in[0,\infty)$ 上で考えても良い。)

$$\nu(dx) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} g(r,\xi) 1_{dx}(r\xi) dr, \quad \int_{0}^{\infty} g(r,\xi) dr = \infty \quad \lambda(d\xi) \text{-a.e.}$$

を満たせば、 $\forall t > 0, X_t$ の分布は絶対連続.

注) 発散条件には, $\nu=0$, i.e., $\lambda=0$ の場合も含まれるが, この時には, rank A=d となる. これの証明には, 次の 2 つの補題を用いる.

補題 5.1 ν が動径方向に絶対連続で、任意の d-1 次元部分空間 V に対し、 $\nu(V)=0$ なら、 ν^{d*} は絶対連続となり、前定理より μ は絶対連続.

補題 5.2 線形部分空間 V; $\dim V \leq d-1$ に対し, \mathbf{R}^d からの直交射影を表す行列を T とする. ν が動径方向に絶対連続なら, V 上の νT^{-1} もそうで, ν が発散条件を満たせば, νT^{-1} も $\neq 0$ なら、そう.

[定理 5.4 の証明]

t=1 のとき、即ち、 μ が絶対連続を示せば良い.さらに、前にも述べたように、A-0 として示せば、十分で、d=1 なら、 ν が絶対連続となるので、定理 5.3 より、成り立つ.d-1 次元以下では成り立つとして、d 次元のときに示す.任意の d-1 次元の部分空間 V に対し、 $\nu(V)=0$ なら、補題 5.1 から、 μ は絶対連続.従って、 $^{\exists}V$: d-1 次元部分空間; $\nu(V)>0$ のときに示せば良い.まず、 V_1 を、 ν を V に制限したものの台の張る部分空間とする. $1 \leq \dim V_1 \leq d-1$ である,その直交補空間を V_2 とし、それぞれへの直交射影の行列を T_1, T_2 として、更に、 $x_j = T_j x$ と表すことにする. $\mathbf{R}^d = V_1 \oplus V_2$ である.また $\mu_1 \in I(\mathbf{R}^d)$ を次で定義する.

$$\widehat{\mu_1}(z) = \exp\left[\int_{V_1} (e^{i\langle z,x\rangle} - 1 - i\langle z,x\rangle 1_D(x))\nu(dx)\right] \quad (D = \{|x| < 1\})$$

このとき、補題 5.2 から、 V_1 上で、 νT_1^{-1} が動径方向に絶対連続で発散条件も満たすので、帰納法の仮定より、 $^{\exists_1}f_1(x_1)\geq 0$; $\mu_1(dx_1)=f(x_1)dx_1$. $B\in\mathcal{B}(\mathbf{R}^d)$; |B|=0 に対し、 $\mu(B)=0$ を示せば良い. $\mu_2\in I(\mathbf{R}^d)$ を $\mu=\mu_1*\mu_2$ で定義する.

$$\mu(B) = \int_{\mathbf{R}^d} h(y_1, y_2) \mu_2(dy), \quad h(y_1, y_2) := \int_{V_1} 1_B(x_1 + y_1, y_2) f(x_1) dx_1$$

となる.

$$\int_{V_2} dy_2 \int_{V_1} 1_B(x_1, y_2) dx_1 = |B| = 0$$

 $\mu(B) = \int_{\mathbf{R}^d} h(y_1, y_2) 1_{B_2}(y_2) \mu_2(dy) = \int_{B_2} \rho_2(dy_2) \int_{V_1} h(y_1, y_2) \rho_1(dy_1|\ y_2)$

となり, $\rho_2 \in I(V_2)$ である. ν_2 を μ_2 の Lévy 測度とすると, ρ_2 の Lévy 測度は, $\nu_3 := \nu_2 T_2^{-1}|_{V_2}$ となり, V_2 上で, 動径方向に絶対連続で発散条件も満たし, しかも, ρ_2 は非退化である. 実際, もし, ν_3 の台が, V_2 の真部分空間 $V_2^0 \subset V_2$ にあるとすると, ν_2 の台が, $V_1 + V_2^0$ にあることになり, よって, ν もそうなり, μ の非退化性に反するので, ν_3 の台の張る空間が V_2 となり, ρ_2 は V_2 上で非退化となる. 従って, 帰納法の仮定により, ρ_2 は V_2 上で絶対連続となり, $\rho_2(B_2) = 0$. 故に, $\mu(B) = 0$ を得る.

[補題 5.1 の証明] |B| = 0 として, $\tilde{\nu}^{d*}(B) = 0$ を示せば良い.

$$\widetilde{\nu}^{d*}(B) = \int_{S^d} \prod_{j=1}^d \lambda(d\xi_j) \int_0^\infty \cdots \int_0^\infty 1_B(r_1\xi_1 + \cdots + r_d\xi_d) \prod_{j=1}^d g(r_j, \xi_j) (1 \wedge r_j^2) dr_j.$$

まず仮定より、 $\forall V \subset \mathbf{R}^d$; 部分空間; $\dim V < d$ に対し、 $\lambda(V \cap S) = 0$ として良い. 更に、 $V(\xi_1,\dots,\xi_d)$ を $\xi_1,\dots,\xi_d \in S$ の張る線形空間として、 $1 \leq r \leq d$ に対し、 $K_r = \{(\xi_1,\dots,\xi_d) \in S^d; \dim V(\xi_1,\dots,\xi_d) = r$ とおく. このとき、 S^d を次のように素な集合の和に分解する.

$$S^d = \bigcup_{r \le d} K_r, \quad K_r = \bigcup_{\{i_1, \dots, i_r\}} K(i_1, \dots, i_r) \text{ if } r < d.$$

但し、 $K(i_1,\ldots,i_r)$ は $(\xi_1,\ldots,\xi_d)\in K_r$ の内、 $\xi_{i_1},\ldots,\xi_{i_r}$ が線形独立なもの全体とする.後は、 K_d 上では、|B|=0 より、0 となり、残りは、仮定から消えるので、 $\widetilde{\nu}^{d*}(B)=0$ を得る.実際、 ξ_1,\ldots,ξ_d が線形独立なら、変数変換 $(r_j)_{j< d}\mapsto r_1\xi_1+\cdots+r_d\xi_d$ により、

$$\int_0^\infty \cdots \int_0^\infty 1_B(r_1\xi_1 + \cdots + r_d\xi_d) \prod_{j=1}^d g(r_j, \xi_j) (1 \wedge r_j^2) dr_j = 0$$

となるので, K_d 上で 0 となる. また, $1 \le r \le d-1$ として, $i_0 \ne i_1, \ldots, i_r$ を固定すると, 仮定より, $\lambda(K(i_1,\ldots,i_r))=0$ かつ, $K(i_1,\ldots,i_r)=S\cap V(\xi_{i_1},\ldots,\xi_{i_r})$ なので,

$$\int_{K(i_1,\dots,i_r)} \prod_{j=1}^d \lambda(d\xi_j) \le \int_{S^{d-1}} \prod_{j \ne i_0} \lambda(d\xi_j) \int_S 1_{V(\xi_{i_1},\dots,\xi_{i_r})}(\xi_{i_0}) \lambda(d\xi_{i_0}) = 0.$$

よって
$$\widetilde{\nu}^{d*}(B)=0$$
.

[補題 5.2 の証明] V の直交補空間を V_2 , そこへの射影を T_2 とする. $c:=\lambda(S\setminus V_2)$ とおく. c=0 なら, ν の台は V_2 に集中し, νT^{-1} の台は $\{0\}$ となるので, 明らか. c>0 とする. $Q:=c^{-1}\nu$ を $S\setminus V_2$ に制限し, 確率測度として, $Y(\xi)=T\xi/|T\xi|, Z(\xi)=T_2\xi$ を確率変数とみる

とき、Y の分布を、 $P_Y(d\eta) = Q(Y \in d\eta)$ on $S \cap V$, $Y = \eta$ という条件の下で、Z の条件付き分布を $P_Z^{\eta}(d\zeta) = Q(Z \in d\zeta | Y = \eta)$ on V_2 とする、 $P_Z^{\eta}(d\zeta)$ は $\{|\zeta| < 1\} \cap V_2$ 上の分布で、 P_Y 測度 0 の η を除いて定まる。 $\xi = T\xi + T_2\xi = (1 - |Z|^2)^{1/2}Y + Z$ である $(1 = |\xi|^2 = |T\xi|^2 + |Z|^2$ より、 $|T\xi|^2 = 1 - |Z|^2$ による)、このとき、 $\Lambda(d\eta) := cP_Y(d\eta)$ 、

$$G(r,\eta) := \int_{V_2} (1 - |\zeta|^2)^{-1/2} g((1 - |\zeta|^2)^{-1/2} r, (1 - |\zeta|^2)^{1/2} \eta + \zeta)) P_z^{\eta}(d\zeta)$$

とおけば, 次を得る.

$$\nu T^{-1}(B) = \int_{S \cap V} \Lambda(d\eta) \int_{0}^{\infty} G(r, \eta) 1_{B}(r\eta) dr$$

実際, $\forall B \in \mathcal{B}(V); 0 \notin B$ に対し、上の分布のもと、 $\xi - \zeta = T\xi = (1 - |\zeta|^2)^{1/2}\eta$ より、

$$\begin{split} \nu T^{-1}(B) &= \int_{S\backslash V_2} \lambda(d\xi) \int_0^\infty g(r,\xi) 1_B(rT\xi) dr \\ &= c \int_{S\cap V} P_Y(d\eta) \int_{V_2} P_z^{\eta}(d\zeta) \int_0^\infty g(r,(1-|\zeta|^2)^{1/2}\eta + \zeta)) 1_B(r(1-|\zeta|^2)^{1/2}\eta) dr \\ &= c \int_{S\cap V} P_Y(d\eta) \int_{V_2} (1-|\zeta|^2)^{-1/2} h_B(\eta,\zeta) P_z^{\eta}(d\zeta). \end{split}$$

但し,

$$h_B(\eta,\zeta) = \int_0^\infty g((1-|\zeta|^2)^{-1/2}r, (1-|\zeta|^2)^{1/2}\eta + \zeta))1_B(r\eta)dr.$$

これより、上式を得る.

更に、発散条件については、 $\forall C \in \mathcal{B}(S), \nu((0,\infty)C) = 0$ or ∞ と同値で、 $C \in \mathcal{B}(S \cap V)$ なら、 $x \in T^{-1}((0,\infty)C) \iff Tx \neq 0, Tx/|Tx| \in C$ より, $(0,\infty)C + V_2$ を単位ベクトル化したものを C_1 とおけば, $T^{-1}((0,\infty)C) = (0,\infty)C_1$,かつ, $C_1 \in \mathcal{B}(S)$ なので, $\nu T^{-1}((0,\infty)C) = \nu((0,\infty)C_1) = 0$ or ∞ となる.

6 Lévy 過程と Markov 過程

 (X_t) : Markov 過程 (Markov process) $\stackrel{\text{def}}{\Longleftrightarrow}$ 任意の時刻 $0 \le s < t$ と有界 Borel 関数 f に対し, $E[f(X_t)|\mathcal{F}_s] = E[f(X_t)|X_s]$ a.s. 更に, (上式)= $E[f(X_{t-s}|X_0=x]|_{x=X_s}$ a.s. となるとき, 時間的一様な Markov 過程 (time-homogeneous MP) という.

また $X_0=x$ a.s. のとき, x を出発する Markov 過程という. またこのとき, $X_t=X_t^x$ と表したり, (X_t,P_x) と表したりする.

例えば、Lévy 過程 (X_t) に対し、 $X_t^x = x + X_t$ とおけば、x を出発する Markov 過程となる.

 (X_t, P_x) を \mathbf{R}^d 上の x を出発する時間的一様なマルコフ過程とする. このとき有界 Borel 関数 φ に対し、

$$P_t(x, dy) := P_x(X_t \in dy), \quad P_t\varphi(x) := E_x[\varphi(X_t)] = \int_{\mathbf{R}^d} \varphi(y) P_t(x, dy)$$

を推移確率 という.

推移確率 $(P_t(x,dy))_{t\geq 0}$ に対し、 $\exists (P_t(dy))_{t\geq 0}$; $P_t(x,dy)=P_t(dy-x)$ ($\forall t>0$) となるとき、空間的一様という、このとき、 (X_t) は時間的空間的一様な Markov 過程という.

これは、実は法測の意味の Lévy 過程と同等である. $P_t(dy) = \mu^{t*}(dy)$ で与えられる.

定理 6.1 (X_t) を, x_0 を出発する時間的一様な Markov 過程で, $P_t(x, dy)$ をその推移確率とする. $\varepsilon > 0$ に対し, $D_{\varepsilon}(x) := \{y; |x-y| < \varepsilon\}$ として,

$$\alpha_{\varepsilon}(t) := \sup_{x \in \mathbf{R}^d} P_t(x, D_{\varepsilon}(x)^c) = \sup_{x \in \mathbf{R}^d} P_x(|X_t - x| \ge \varepsilon)$$

とおく.

- $(1)^{\forall} \varepsilon > 0$, $\lim_{t \downarrow 0} \alpha_{\varepsilon}(t) = 0$ なら, (X_t) は確率連続で, D バージョンをもつ, i.e., (Y_t) は D 過程で, (X_t) と同等。更に, $^{\forall} t > 0$, $P(Y_{t-} = Y_t) = 1$ も満たす (これは (X_t) の確率連続性, 故に (Y_t) の確率連続性からすぐ言える).
 - (2) $\forall \varepsilon > 0$, $\lim_{t\downarrow 0} t^{-1}\alpha_{\varepsilon}(t) = 0$ なら, (X_t) は C バージョンをもつ.

[証明] Lévy 過程の時とほぼ同様で、証明の②が次のように変わるだけなので、それを示す、 $\widetilde{\alpha_{\varepsilon}}(t)$ 、 $B(k,\varepsilon,I)$ を前と同じ定義として、 $0\leq s_1<\dots< s_m\leq a< b,I\subset [a,b]$ として、有界 Borel 関数 $g(x_1,\dots,x_m)$ に対し、 $Z:=g(X_{s_1},\dots,X_{s_m})$ とおく.

② Markov 性より, 次が成り立つ.

$$E[Z; B(p, 4\varepsilon, I)] \le EZ(2\widetilde{\alpha_{\varepsilon}}(b-a))^p.$$

p についての帰納法で示せる. p=1 なら, C_k, D_k を Lévy の時と同じとする, 即ち, C_k を $|X_{t_j}-X_a|$ が, j=k で初めて, 2ε 以上となる事象として, $D_k=\{|X_b-X_{t_k}|\geq \varepsilon\}$ とすれば, C_k は互いに素で, Lévy の時と全く同様に,

$$B(1, 4\varepsilon, I) \subset \bigcup_{k=1}^{n} \{|X_{t_k} - X_a| \ge 2\varepsilon\} = \bigcup_{k=1}^{n} C_k \subset \{|X_b - X_a| \ge \varepsilon\} \cup \bigcup_{k=1}^{n} (C_k \cap D_k)$$

となる. 後は, \mathcal{F}_a と \mathcal{F}_{t_k} で条件を付けて, Markov 性を用いれば,

$$\begin{split} E[Z;B(1,4\varepsilon,I)] &\leq E[ZP(|X_b-X_a|\geq \varepsilon|\ X_a)] + \sum_{k=1}^n E[Z1_{C_k}P(D_k|\ X_{t_k})] \\ &= E[ZP_{X_a}(|X_{b-a}-X_0|\geq \varepsilon)] + \sum_{k=1}^n E[Z1_{C_k}P_{X_{t_k}}(|X_{b-t_k}-X_0|\geq \varepsilon)] \\ &\leq EZ\alpha_\varepsilon(b-a) + \sum_{k=1}^n E[Z1_{C_k}]\alpha_\varepsilon(b-t_k) \leq EZ \cdot 2\widetilde{\alpha_\varepsilon}(b-a) \end{split}$$

次に $p\ (\geq 1)$ で求める不等式が成り立つとして、再び、 E_k, F_k を Lévy のときと同じで定義すれば、

$$B(p, 4\varepsilon, I) = \bigcup_{k=1}^{n} E_k, \quad B(p+1, 4\varepsilon, I) \subset \bigcup_{k=1}^{n} (E_k \cap F_k).$$

後は, $P(F_k|X_a) \leq 2\widetilde{\alpha_\varepsilon}(b-a)$ と帰納法の仮定, Markov 性を \mathcal{F}_a で用いて, 次を得る.

$$E[Z; B(p+1, 4\varepsilon, I)] \leq \sum_{k=1}^{n} E[Z1_{E_k} P(F_k | X_a)] \leq 2\widetilde{\alpha_{\varepsilon}}(b-a) \sum_{k=1}^{n} E[Z; E_k]$$

$$= 2\widetilde{\alpha_{\varepsilon}}(b-a) E[Z; B(p, 4\varepsilon, I)] \leq EZ(2\widetilde{\alpha_{\varepsilon}}(b-a))^{p+1}.$$

従って、求める不等式を得る.